欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    多通道传感器数据采集系统的设计最后改版.doc

    • 资源ID:4141693       资源大小:1.09MB        全文页数:48页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多通道传感器数据采集系统的设计最后改版.doc

    教学单位 宝鸡文理学院 学生学号 编 号 本科毕业设计 题目 多通道传感器数据采集系统的设计 学生姓名 专业名称 电气工程及自动化 指导教师 2013 年 3 月 10 日多通道传感器数据采集系统的设计 摘 要 : 数据采集系统的应用范围越来越宽、所涉及到的测量信号和信号源的类型越 来越多、对测量的要求也越来越高,国内现在已有不少数据测量和采集的系统,但很多系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对测试环境要求较高等问题。人们需要一种应用范围广、性价比高的数据采集系统。 本设计主要完成了基于AT89S51单片机控制的数据采集系统的硬件电路设计以及相应的软件设计。本系统的硬件设计主要包括:多路转换开关及前置放大电路的设计,采样保持电路的设计,模数转换电路的设计,数模转换电路的设计。多路转换开关及前置放大电路的设计中重点介绍了多路开关的选择、AD521放大倍数的计算以及多路开关CD4051和放大器AD521硬件连接电路。采样保持电路的设计中重点介绍了采样保持电路的原理和主要参数以及采样保持器的选择和连接电路。模数转换电路的设计中重点介绍了系统A/D通道的选择和A/D转换器的各项误差分析以及A/D转换器AD574的介绍、输入方式和连接电路。数模转换电路的设计中重点介绍了D/A通道的选择,D/A转换器的选择以及D/A转换器DAC0832的介绍、连接电路和DAC0832的输出方式。硬件设计中还介绍了单片机的选择,单片机AT89S51的时钟电路和复位电路。本系统的软件设计主要包括编译器的选择,各部分的流程图以及程序的设计。本设计中还分析了系统的性能及误差。本设计基本上实现了对32路的多路数据采集的设计,但是由于时间紧凑以及自己的知识水平有限等原因,没有对所设计的整个系统进行调试及仿真,因而也就没能做出实物出来;同时可能有很多问题还没有发现,希望老师和同学给予指出。关键词: 数据采集;AT89S51单片机;CD4051;DAC0832;DAC0832 Multi-channel data acquisition system based on MCU Abstract :The application rage of data acquisition system is becoming wide increasingly, the types of measurement signal and signal source are also more and more, Surveyors also require much higher measure requirements. Domestic now have a lot of date acquisition and measure systems, but there are many systems involving these issues: single function, less collection access, low collection rate, high demands of collection test environment and so on. So people require a broad scope of application, high reliability and low-cost data acquisition system. Completed the design of the main AT89S51 Microcontroller based data acquisition system hardware design and the corresponding software design. The hardware design of the system include: multi-switch and preamplifier circuit design, sample and hold circuit, ADC circuit design, digital to analog conversion circuit. Multi-switch and preamplifier circuit design highlights the choice of multi-way switch, AD521, and the calculation of the magnification CD4051 MUX hardware connection circuit and amplifier AD521. Sample and hold circuit design focuses on the principles of sample and hold circuit and the main parameters and sample and hold circuit for the selection and connection. Analog-digital conversion circuits focused on the design of the system A / D channel selection and A / D converter of the error analysis and A / D converter AD574 introduction, input and connection circuits. Digital-analog conversion circuit design highlights the D / A channel selection, D / A converter selection and D / A converter DAC0832 introduction, connecting the output circuit and the DAC0832. It also describes the hardware design, the choice of microcontroller, microcontroller AT89S51 the clock circuit and reset circuit. The software design includes the choice of compiler, various parts of the flow chart and program design. This design also analyzed the system performance and errors. The design is basically realized the design of eight-channel data acquisition, but because of tight time and limited knowledge of their own reasons, not the entire system is designed for debugging and simulation, and thus have not been able to make in-kind out; the same time There may be many problems have not been found, giving hope that teachers and students. Keywords: data acquisition; AT89S51 microcontroller; CD4051; DAC0832;DAC0832 目 录1 引言11.1 多通道数据采集系统简介11.2国内外数据采集器的应用现状11.3 本设计的主要任务32 系统硬件电路设计42.1 硬件设计思路42.2 系统硬件电路设计52.2.1 多路转换开关52.2.2 前置放大电路72.2.3 采样/保持电路102.2.4 模/数转换电路142.2.5 数/模转换电路182.2.6 各芯片分析及方案论证233 系统的软件设计263.1 KEILC51 编译器简介263.1.1 uVision2集成开发环境263.1.2 编辑器和调试器273.2 程序流程图283.2.1主程序流程图283.2.2 A/D转换程序的流程图和D/A转换程序的流程图293.3 系统总图294 系统可靠性措施314.1 低功耗措施314.2 抗干扰措施315 结 论32致 谢33参考文献34附录1 系统硬件总图35附录2 源程序36附录3 附表391 引言1.1 多通道数据采集系统简介在工业生产和科学技术研究过程的各行业中,常常要对各种数据进行采集,随着现代化工业的发展,多通道数据采集系统成为日益重要的技术,广泛应用于工农业等行业。多通道数据采集系统通常采用的方法有,用微机控制,微机在工业领域中的一个主要应用就是与原有设备相结合,构成新的数字化、智能化的测控系统,从而提高原有设备的性能,但微机设备复杂、成本较高,使得微机控制的数据采集系统技术难度、成本都相应的提高,从而制约了微机在数据采集这方面的应用。随着单片机技术的飞速发展,应用领域日益扩大,各种型号、系列的单片机不断推出,许多新技术、新工艺被采用,因而具有更高的性能价格比1。单片机控制的多通道据采集系统使用非常方便、性能优越、运行可靠、广泛地应用于各行各业。本文利用AT89S51 单片机设计了一个多通道据采集系统,着重介绍该系统的特点及实现方法。本设计采用单片机作为控制来构成多路数据采集系统,并完成了软硬件的设计。在过程控制及各种仪器表仪表中,由微型计算机进行实时控制及实时数据处理,单片机所加工的信息总是数字量。被控制或测量对象的有关参量往往是一些连续变化的模拟量,如温度、湿度、压力、流量、速度等。系统通过多路模拟开关采集多路数据,使其通过多路模拟转换开关,把采集到的多路模拟信号经过放大、采样保持、A/D(Analog to Digital Converter,模数转换器)转换电路转换成数字信号,输入单片机进行处理,处理后发出的数字信号经过D/A(Digital to Analog Converter,数模转换器)2转换电路转换成模拟信号。从而达到采集数据,监控,滤波等目的。本设计的系统实现了一种高性能、高智能的实用型多通道数据采集系统,可达到对收集的数据进行监控,滤波等目的。1.2国内外数据采集器的应用现状1、国外数据采集器的现状随着国外微电子技术、计算机技术、测控技术和数字通信技术的发展,目前国外数据采集技术己经有了很大的发展。从近来国外公司展示的新产品可以看出,主要的发展可以概括为体积小、功能多样和使用方便等三个方面。此外,数据采集器的应用特点还反映在如下几个方面: (1)它既是一台数据采集器,又是一台功能较全的机器状态分析仪,不仅有常用的时域分析和频域FIT分析,而且还可以做倒谱、细化、包络谱和时频域分析等功能;(2)它既是采集器,又可以兼做其它仪器来用。如法国迈威公司的MOVILOG数据采集器,就可作为一台动平衡仪来用,它不但可以做单一平面的动平衡,还可以做六个平面的动平衡;(3)储存量大,从低频到高频频率测量范围宽,能适应机器从低速到高速的各种监测范围需要;(4)可利用振动传感器或过程传感器或电量传感器等输入多种物理量,如振动加速度、位移、相位、转速、温度、压力、流量、电压、电流和功率等,形成多参数监测系统;(5)数据采集器配套的软件是以通用窗口的软件为基础,功能较强。一套软件可同时支持数种不同型号与不同档次的数据采集器;(6)数据采集器已经安装了LCD背光显示屏,并尽量减少了操作键,元器件高度集成化,并减轻了机器的重量,采用防水防撞击的密封外壳,能适应恶劣的工业环境。2、国内数据采集器的现状 上世纪80年代末到90年代初,我国一些仪器厂已研制出了多种数据采集器,其中单通道的有SP201,SC247型,双通道的有EG3300,YE5938型,超小型的有911,902和921型。具有采集静态信号的有SMC-9012型。所配套的软件包基本上包括了设备维修管理和基本频谱分析两大部分,能够适应机器设备的一般状况监测和故障诊断,基本己经达到了国外数据采集器的初期水平。但是,国内数据采集器与目前国外数据采集器相比,在技术上仍然存在着一定的差距,主要表现在:(1)由于受国内振动等传感器水平的限制,分析频率范围不宽,给一些高速的机器或轴承的诊断等带来了一定的困难;(2)由于数据采集器的内存不大,数据采集器本身的信号处理功能不强,在现场只能做一些简单诊断,精密诊断需要离线到计算机上去做,现场精密诊断功能较弱;(3)设备的软件水平仍在设备维修管理和基本频谱分析上徘徊,机器故障诊断专家系统还需完善,软件人机界面有待改进。数据采集是整个工厂自动化的最前端,测试精度、速度与实现该功能的成本是数据采集三个重要因素,数据采集也正朝着这几个方向发展。高速、实时数据采集在运动控制、爆炸检测、医疗设备、快速生产过程(如石油化工过程)和变电站自动化等领域都有非常重要的应用例,这些行业中,对高速数据采集的需求远远超过目前实际可以实现的程度。用户的需求促进了技术的发展和新产品的出现,因此,数据采集仍然会有长足的发展。1.3 本设计的主要任务本设计用单片机控制多通道数据采集系统,本文着重介绍该系统的工作原理及硬件与软件设计,本设计的主要组成如下:(1)多通道数据输入单元。(2)采样保持电路的A/D转换单元。(3)硬件和单片机的连接电路。(4)单片机输出的数据锁存和D/A转换单元。多通道数据采集系统的方案及总体设计,包括主体电路的设计和单片机控制电路的设计(要用到单片机的控制整个系统),因此要完成单片机应用系统的硬、软件设计并完成软件调试,以满足整个系统的要求。整个系统的设计包括硬件设计和软件设计两部分。硬件设计主要完成多路数据采集整个硬件电路及I/O接口的设计:包括模拟多路开关电路、运算放大电路、采样保持电路、模数转换电路、硬件和单片机的连接电路、数模转换电路、转换开关保护电路等组成;软件设计主要完成控制整个系统的应用程序与调试,包括主程序、A/D和D/A转换程序、多路开关控制以及I/O接口控制等程序的设计。系统总框图如图1所示。数据器传感器传感器 多 路 模 拟 开 关 前 置 放 大单片机数 模 转 换执 行 机 构模 数 转 换采 样 保 持传感器 图1 系统总框图2 系统硬件电路设计2.1 硬件设计思路 多通道数据采集系统的正常运行依赖于整个系统硬件设备的科学设计。根据课题设计任务的要求,结合软件的设计,选择合适的电路元件,设计合理的接口电路以便能够高效率、稳定合理、方便的实现多路数据采集。多通道数据采集系统的硬件部分分为多路数据输入部分,采样保持部分,A/D转换部分,硬件和单片机的连接电路部分,D/A转换部分。(1)多通道数据输入部分在不要求高速采样的场合,一般采用共享的A/D转换通道,分时对各路模拟量进行模/数转换,目的是简化电路,降低成本。用模拟多路开关来轮流切换模拟量与A/D转换器间的通道,使得在一个特定的时间内,只允许一路模拟信号输入到A/D转换器,从而实现分时转换的目的。一般模拟多路开关有2N个模拟输入端,N个通道选择端,由N个选通信号控制选择其中一个开关闭合,使对应的模拟输入端与多路开关的输出端接通,让该路模拟信号通过。有规律地周期性改变N个选通信号,可以按固定的序列周期性闭合各个开关,构成一个周期性分组的分时复用输出信号,由后面的A/D转换器分时复用对各通道模拟信号进行周期性的转换。在数据采集时,来自传感器的模拟信号,一般都是比较弱的电平信号,因此需要放大电路把输入的模拟信号进行适当的放大。放大器的作用是将这些微弱的输入信号进行放大,以便充分利用A/D转换器的满量程分辨率。为了充分利用A/D转换器的分辨率(A/D转换器输出的数字位数),就要把模拟输入信号放大到与A/D转换器满量程电压相应得电平值。(2)采样保持部分模拟信号进行A/D转换时,从启动转换到转换结束输出数字量,需要一定的转换时间。在这个转换时间内,模拟信号要基本保持不变。否则转换精度没有保证,特别当输入信号频率较高时,会造成很大的转换误差。要防止这种误差的产生,必须在A/D转换开始时将输入信号的电平保持住,而在A/D转换结束后又要跟踪输入信号的变化。实现这种功能可以用采样/保持器来实现,因而,由于采样/保持器的加入,大大提高了数据采集系统的采集频率。(3)A/D转换部分因为单片机只能处理数字信号,所以需要把模拟信号转换成数字信号,实现这一转换功能的器件是A/D转换器。A/D转换器是采样通道的核心,因此,A/D转换器是影响数据采集系统采样速率和精度的主要因素之一。(4)硬件和单片机的连接部分该部分用来将传感器输出的数字信号进行整形或电平调整,然后再传给单片机。单片机及外设负责对数据采集系统的工作进行管理和控制,并对采集到的数据作相应的处理。 (5)D/A转换部分D/A转换部分也是数据采集系统的一个重要部分,在数字控制系统中作为关键器件,用来把单片机输出的数字信号转换成电压或电流等模拟信号,并送入执行机构进行控制或调节。2.2 系统硬件电路设计 本系统的硬件设计主要包括:多路转换开关及前置放大电路的设计,采样保持电路的设计,模数转换电路的设计,数模转换电路的设计。2.2.1 多路转换开关1. 多路开关的选择多路转换开关在模拟输入通道中的作用是实现多选一操作,即利用多路转换开关将多路输入中的一路接至后续电路。切换过程可在CPU或数字电路的控制下完成。常用的模拟开关大都采用CMOS工艺,如8选1开关CD4051、双4选1开关CD4052、三3选1开关CD4053等。本设计是实现32路数据采集,所以选择4片8选1的模拟开关。模拟多路开关中,不可避免导通电阻RON的存在。RON使信号电压产生跌落,跌落量与流过开关的电流成正比3。设计中希望RON越小越好,但是RON越小的器件价格越高。所以根据器件的价格和系统的容忍度,选择RON的值。多路开关的主要参数是精度和速度。多路开关的精度以传输误差的大小来间接表示。多路开关的速度以信号通过多路开关的通过率来间接表示。传输误差是衡量多路开关的一个指标,多路开关的传输误差包括两个方面。(1)多路开关导通电阻加上信号源阻抗与负载阻抗构成了分压器。当要求精度为0.01%时,负载阻抗就应至少是开关导通电阻与信号源阻抗之和的104倍。在数据采集系统中,多路开关的负载一般是采样/保持器。因为典型的多路开关的导通电阻为200欧姆200千欧姆,所以,如果信号源阻抗在几百欧姆以下,则作为负载的采样/保持器,其输入阻抗应在108欧姆以上。(2)多路开关的漏电流在信号源阻抗上产生偏移电压,而漏电流与工作温度关系很大。因此,应该根据最高工作温度时的漏电流来计算偏移误差。通过率是衡量多路开关的另一个指标,是多路开关从一个通道切换并使下一个通道建立到规定精度所能达到的最高切换率。它一方面取决于多路开关建立时间,并与规定的建立精度有关,另一方面为了避免两个通道同时接通,多路开关被设计为“先断后通”,这增加了断开到接通的延时,影响了通过率的提高。在确定多路开关的通过率时,要跟据系统的采样速率来考虑。根据上面的分析,本设计选用的是采用CMOS工艺的8选1开关CD4051。CD4051的模拟信号范围为±7.5V,导通电阻RON为125欧姆,关断漏电流为0.1µA,开关时间为120ns。2. 多路转换开关CD4051CD4051由电平转换电路、译码驱动电路和CMOS模拟开关电路三部分组成。开关部分的供电电压为VEE(低端)和VDD(高端),因此需要的控制电压为 VEEVDD,电平转换电路将输入的逻辑控制电压(A、B、C、INH端)从VSSVDD转换到VEEVDD以满足开关控制的需要。CD4051原理在用作8选1模拟多路开关时,CD4051有8个数据输入端,在3个选择输入端A、B、C的控制下,从8个模拟开关中选择1个模拟开关使之导通,将相应的输入数据通过导通的模拟开关送到公共输出端。CD4051有1个公共输出端,当该输入端为高电平时,不论数据输入端和输出端如何变化,在内部的8个模拟开关均为关断状态。其真值表如表1所示。表1 CD4051真值表INH CBA所选通道0000S00001S1 0111S71×××S0S7均未选中3控制程序(1)消除抖动引起的误差和机械开关类似,多路开关在通道切换时也存在抖动过程,会出现瞬变现象。若此时采集多路开关输出信号,就可能引入很大的误差。影响测量结果的准确性。消除抖动的常用方法有两种:一种是用硬件方法来实现,即用RC滤波器除抖动;另一种是用软件延时的方法来解决。在有微控制系统中,软件方法较硬件方法更显优势。(2)准确定时实际应用中,需要对多路信号进行连续采样,并且每次采样的间隔也有严格的要求。这就要求控制器具有严格的定时机制。实践中用定时器控制采样时序。本设计是对32路模拟信号进行采集,每路采集频率为1.25KHz,那么系统总的采样频率为1.25×32=40 KHz,也就是400µs切换一次通道,采集一个数据。在本设计的系统中,只需要设计定时器,实现400µs定时中断,在中断处理程序中采集数据。在设计系统时,设计定时器400µs定时中断,具体程序如附录1所示。2.2.2 前置放大电路传感器检测出的信号一般是微弱的,不能直接用于显示、记录、控制或进行A/D转换。因此,在进行非电量到电量转换之后,需要将信号放大4。由于前置放大器要求输入阻抗高,漂移低、共模抑制比大,所以本设计选用高阻抗、低漂移的运算放大器AD521作为前置放大器。AD521放大器的简化原理如图2所示。IX1=VO/RSBG4BG3BG1 BG22I2I镜 象 电 流 源U+U-敏感端输出端I-VI/RGI+VI/RGRGVI/RG=IRSIX2II基准端VI图2 AD521简化原理图工作原理:差分输入电压VI加在外接电阻RG两端,在RG上产生的不平衡电流I=VI /RG;流过晶体管BG1和BG2,由于晶体管BG3和BG4为镜象电流源所偏置,迫使流过BG3和BG4集电极的电流相等。因此由差分输入电压所产生的不平衡电流流过另一个外接电阻RS,由于反馈放大器的作用,该放大器的输出电压Vo和电阻RS两端的电压保持相等,因此可得: (2-1)即放大器的放大倍数的计算公式为2-2所示: (2-2)可见,只要适当改变RS / RG之比值即可改变放大器增益。其放大倍数可在11000的范围内调整。作为一个精密的仪用放大器,AD521仅有两只增益调整电阻RG和RS,通过调整RG和RS的阻值,可使放大器在0.11000增益值范围内取得任意值,电阻RG和RS之比率的调整不会影响AD521的高CMR(达120dB),或高输入阻抗(3×109欧姆)。此外,AD521与大多数由单个运放组成的仪用放大器的不同点是:(1)不需要采用精密匹配的外接电阻。(2)输入端可承受的差动输入电压可达30V,有较强的过载能力。(3)对各个增益段均进行了内部补偿,并具有优良的动态特性,其增益带宽达40MHz。AD521放大器的典型外部接线图如图3所示。引脚OFFSET(4,6)用于调整放大器零点,调整线路是芯片4,6接到10千欧姆电位器的两个固定端,电位器滑动端接负电源U-(脚5)。引脚RG(2,14)用于外接电阻RG,电阻RG用于调整放大倍数。引脚RS(10,13)用于外接电阻RS,电阻RS用于对放大倍数进行微调。选择RS=100千欧姆±15%时,可以得到比较稳定的放大倍数。 图3 AD521的外部接线图因为选择RS=100千欧姆±15%时,可以得到比较稳定的放大倍数,本设计选择RS为100千欧姆,根据公式(2-1)可知,只要RG选择不同的阻值,就可以得到不同的放大倍数,即就是增益值。表2所示为RG选择不同的阻值,对应的增益值。表2 增益表增益值RG0.11 兆欧姆1100千欧姆1010 千欧姆1001千欧姆1000100欧姆2.2.3 采样/保持电路由于模拟量转换成数字量有一个过程,这个动态模拟信号在转换过程中是不确定的,从而引起转换器输出的不确定性误差,直接影响转换精度。尤其是在同步测量系统中,几个通道的模拟量均需取同一瞬时值。如果通过多路开关将各通道的信号按时序分别直接送入A/D转换器进行转换(共享一个A/D),所得到的值就不是同一瞬时值,无法进行比较、判断与计算。因此,要求输入同一瞬时的模拟量在整个模数转换过程中保持不变,但在转换之后,又要求A/D转换器的输出端能跟踪输入模拟量的变化。能完成上述任务的器件叫采样/保持电路,简称采/保器(S/H)。当输入信号为缓慢变化的信号,在A/D转换期间的变化量小于A/D转换器的误差,且不是多通道同步采样时,则可以不用采样/保持电路。最基本的采样/保持电路由模拟开关、保持电容和缓冲放大器组成,如图4所示图中S为模拟开关,UC模拟开关S的控制信号,CH为保持电容。当控制信号UC为采样电平时,开关S 导通,模拟信号通过开关S向保持电容CH充电,这时输出电压Uo跟踪输入电压UI的变化。当控制信号UC为保持电平时,开关S断开,此时输出电压Uo保持模拟开关S断开时的瞬时值。为使保持阶段CH上的电荷不被负载放掉,在保持电容CH与负载之间需加一个高输入阻抗缓冲放大器A。采样/保持电路有两种工作状态,即“采样”和“保持”状态,在采样状态中,采样/保持电路的输出跟随模拟输入电压。一旦发出保持命令,采样/保持电路将保持采样命令撤消时刻的采样值,直到保持命令撤消并再次接到采样命令为止。此时采样/保持电路的输出重新跟随输入模拟信号的变化,直到下一个保持命令发生时为止。UOUCCH模拟输入信号驱动信号UISA 图4 采样/保持器原理图1. 采样/保持电路的主要参数(1)孔径时间tAp 在采样/保持电路中,由于模拟开关S有一定的动作滞后,保持命令发出后到模拟开关完全断开所需的时间称为孔径时间tAp。由于孔径时间的存在,采样时间被额外延迟了,在tAp期间输出仍跟随输入变化。(2)捕捉时间tAC 采样/保持电路的控制信号UC由“保持”电平转为“采样”电平之后,其输出电压Uo将从原保持值过渡到跟随输入信号UI值,这段过渡时间称为捕捉时间tAC。它包括模拟开关的导通延时时间和建立跟踪的稳定时间,显然,采样周期必须大于捕捉时间,才能保证采样阶段充分地采集到输入的模拟信号UI。(3)保持电压衰减率 在保持状态下,由于保持电容的漏电流会使保持电压发生变化,式2-3中ID为保持阶段保持电容CH的泄漏电流,它包括缓冲放大器的输入电流、模拟开关断开时的漏电流、电容内部的漏电流等。增大电容CH可减少这种变化,但捕捉时间tAC也随之增大。此外,减小ID可减少这种变化。采用高输入阻抗的运算放大器,选择优质电容如缉、聚四氟乙烯电容作保持电容以及选用漏电流小的模拟开关等措施,可以减少保持电压的变化。 (2-3)2. 采样/保持器的选择与连接电路采样/保持器的选择,是以速度和精度作为最主要的因素。因为影响采样/保持器的误差源比较多,所以关键在于误差的分析。在选择时,一般优先考虑单片集成产品,因为它具有中等性能而价格较低。所谓价格较低,是指采集时间为4s时,采集误差即处于输入值到终值0.1%的误差带内;采集时间为5s25s时,则采集误差为0.01%。单片集成/保持器大都需要外接保持电容。保持电容的质量直接关系到采样/保持器的精度。一般工作温度范围为0+50,并已在25时调整偏移误差和增益误差至零,则可对单片集成采样/保持器做出如表3所示的误差和性能估算。表3 采样/保持器的误差估算误差源性 能误 差采集误差额定采集时间相应的误差0.01%增益误差增益误差温度系数为15×10-6/,温度变化为±25,所以增益误差为15×10-6×250.0375%偏移温漂误 差偏移温漂约为30V/,温度变化±25,所以最大偏移温漂误差为30×25=750(V)。对于10V满量程输入,误差为750V/10V0.0075%非线性误差一般额定值0.01%降落误差与保持电容质量关系很大,降落率dU/dt约为0.2V/s100V/s。且是温度的函数。取dU/dt(25)=10V/s,则+50时该值将增为10倍。假设保持时间10s,则电压降落为10V/s×10×10s=1mV,为满量程值的0.01% 0.01%介质吸收一般估计0.003%(孔径抖动未计算在内) 总误差(最坏情况) 总静态误差(均方根值)0.078% 0.0421%常用的集成采样/保持器有AD582、AD583、AD585以及国家半导体公司的LF198/298/398等。本设计选用AD582。AD582是美国Analog Devices公司生产的通用型采样保持器。它由一个高性能的运算放大器、低漏电阻的模拟开关和一个由结型场效应管集成的放大器组成5。它采用14脚双列直插式封装,其管脚及结构示意图如图6所示,其中脚1是同相输入端,脚9是反相输入端,保持电容CH在脚6和脚8之间,脚10和脚5是正负电源,脚11和脚12是逻辑控制端,脚3和脚4接直流调零电位器,脚2,7,13,14为空脚(NC)。 图5 AD582管脚图由于AD582的以下特征,本设计所以选择AD582采样保持器。(1)有较短的信号捕捉时间,最短达到6s。该时间与所选择的保持电容有关,电容值越大,捕捉时间越长,它影响采样频率。(2)有较高的采样/保持电流比,可达到107。该值是保持电容器充电电流与保持模式时电容漏电流之间的比值,是保证采样/保持器质量的标志。(3)在采样和保持模式时有较高的输入阻抗,约30兆欧姆。(4)输入信号电平可达到电源电压±US,可适应于12位的A/D转换器。(5)具有相互隔开的模拟地、数字地,从而提高了抗干扰能力。(6)具有差动的逻辑输入端+IN和-IN,利用差动的逻辑输入端+IN和-IN,可以由任意的逻辑电平控制其开关。在高压COMS的逻辑电平为0V和+9V时,-IN接入+5V后,则0V输入使芯片处于跟踪模式,+9V输入时芯片工作在保持模式下。(7) AD582可与任何独立的运算放大器连接,以控制增益或频率响应,以及提供反相信号等。由于AD582的孔径时间tAP=50ns、捕捉时间tAC=6s,12位的AD574的转换时间tCONV=25s,则可以计算出系统可采集的最高信号频率如式2-4所示。 (2-4)由(2-4)式可见,本设计的系统能对频率不高于15.53KHz的信号进行采样,使系统可采集的信号频率提高了许多倍,大大改善了系统的采样频率。因此,在数据采样系统中加入采样/保持器是很有必要的。但是由采样定理可知,一个有限带宽的模拟信号是可以在某个采样频率下重新恢复而不丧失任何信号的,该采样频率至少应为两倍于最高信号频率。这意味着带采样/保持器的数据采集系统必须在速率至少为两倍的信号频率下采样、转换,并采集下一个点。因此,本设计的系统可处理的最高输入信号频率应为式2-5所示。 (2-5)AD582是反馈型采样/保持器,保持电容接在运算放大器A2的输入端(脚8)与反相输入端(脚6)之间。根据“密勒效应”,这样的接法相当与在A2的输入端接有点容C1H=(1+A2) CH (A2为运算放大器A2的放大倍数)。所以AD582外接较小的电容可获得较高的采样速率。当精度要求不高(±0.1%)而速度要求较高时,可选CH=100PF,这样的捕捉时间tAC6us。当精度要求较高(±0.015%)时,为了减小馈送的影响和减缓保持电压的下降,应取CH=1000PF。因此,本设计的系统根据对采集精度的要求可以配置不同的CH的,图6为AD582的连接图。图6 AD582的连接图2.2.4 模/数转换电路A/D转换器是数据采集系统的关键器件,选择A/D转换器时,要根据系统采集对象的性质来选择其类型。1. 系统A/D通道方案的确定 在数据采集中,要采集多个模拟信号,而且采集要求不尽相同。因此,系统的数据输入通道方案多种多样,应该根据被测对象的具体情况确定6。目前,常见的系统A/D通道方案有以下几种。(1)不带采样/保持器的A/D通道对于直流或低频信号,通常可以不用采样/保持器,直接用A/D转换器采样。(2)带采样/保持器的A/D转换通道当模拟输入信号电压最大变化率较大时,A/D通道需要使用采样/保持器。带采样/保持器的A/D转换通道分为:多路模拟通道共享采样/保持器的通道、多通道共享A/D转换器的通道、多通道并行A/D转换的通道。多路模拟通道共享采样/保持器的通道是采

    注意事项

    本文(多通道传感器数据采集系统的设计最后改版.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开