初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析).doc
-
资源ID:4133632
资源大小:650KB
全文页数:41页
- 资源格式: DOC
下载积分:16金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析).doc
初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等:平行四边形的对角线互相平分。 3平行四边形的判定:.两组对边分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形。 4、矩形的定义:有一个角是直角的平行四边形。5、矩形的性质:矩形的四个角都是直角;矩形的对角线相等。6、矩形判定定理: 有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。 直角三角形斜边上的中线等于斜边的一半。(连接三角形两边中点的线段叫做三角形的中位线。)8、菱形的定义 :有一组邻边相等的平行四边形。9、菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。S菱形=1/2×ab(a、b为两条对角线长)10、菱形的判定定理:四条边相等的四边形是菱形。 对角线互相垂直的平行四边形是菱形。 11、正方形定义:一个角是直角的菱形或邻边相等的矩形。12正方形判定定理: 邻边相等的矩形是正方形。 有一个角是直角的菱形是正方形。 (矩形+菱形=正方形)常考题:一选择题(共14小题)1矩形具有而菱形不具有的性质是()A两组对边分别平行B对角线相等C对角线互相平分D两组对角分别相等2平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()AAB=BCBAC=BDCACBDDABBD3如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A当AB=BC时,它是菱形B当ACBD时,它是菱形C当ABC=90°时,它是矩形D当AC=BD时,它是正方形4顺次连接任意四边形四边中点所得的四边形一定是()A平行四边形B矩形C菱形D正方形5在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A(3,7)B(5,3)C(7,3)D(8,2)6如图,ABCD的对角线AC与BD相交于点O,ABAC,若AB=4,AC=6,则BD的长是()A8B9C10D117如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B处,若AE=2,DE=6,EFB=60°,则矩形ABCD的面积是()A12B24C12D168如图,在菱形ABCD中,BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则CDF等于()A50°B60°C70°D80°9如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若BF=6,AB=5,则AE的长为()A4B6C8D1010如图,菱形ABCD中,B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A14B15C16D1711如图,在平行四边形ABCD中,AB=4,BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DGAE,垂足为G,若DG=1,则AE的边长为()A2B4C4D812如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A16B17C18D1913如图,正方形ABCD的边长为4,点E在对角线BD上,且BAE=22.5°,EFAB,垂足为F,则EF的长为()A1BC42D3414如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则BFC为()A45°B55°C60°D75°二填空题(共13小题)15已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为 cm216如图,在ABCD中,BE平分ABC,BC=6,DE=2,则ABCD的周长等于 17如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,OAB的周长是18厘米,则EF= 厘米18如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为 19如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(2,0),点D在y轴上,则点C的坐标是 20如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E若CBF=20°,则AED等于 度21如图,ABCD中,ABC=60°,E、F分别在CD和BC的延长线上,AEBD,EFBC,EF=,则AB的长是 22如图所示,菱形ABCD的边长为4,且AEBC于E,AFCD于F,B=60°,则菱形的面积为 23如图,D是ABC内一点,BDCD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 24如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点若POD为等腰三角形,则所有满足条件的点P的坐标为 25如图,已知ABC的三个顶点的坐标分别为A(2,0),B(1,2),C(2,0)请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标 26如图,在菱形ABCD中,AB=4cm,ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒DEF为等边三角形,则t的值为 27如图,四边形ABCD中,A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 三解答题(共13小题)28如图,已知:ABCD,BEAD,垂足为点E,CFAD,垂足为点F,并且AE=DF求证:四边形BECF是平行四边形29已知:如图,在ABC中,AB=AC,ADBC,垂足为点D,AN是ABC外角CAM的平分线,CEAN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明30如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD及等边ABE已知BAC=30°,EFAB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形31如图,矩形ABCD中,AC与BD交于点O,BEAC,CFBD,垂足分别为E,F求证:BE=CF32如图,在ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF(1)线段BD与CD有什么数量关系,并说明理由;(2)当ABC满足什么条件时,四边形AFBD是矩形?并说明理由33如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120°,求菱形BCFE的面积34如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且GCE=45°,则GE=BE+GD成立吗?为什么?35如图,在ABC中,点O是AC边上的一个动点,过点O作直线MNBC,设MN交BCA的角平分线于点E,交BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论36如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分HEF求证:(1)AEHCGF;(2)四边形EFGH是菱形37如图,四边形ABCD中,ADBC,BAAD,BC=DC,BECD于点E(1)求证:ABDEBD;(2)过点E作EFDA,交BD于点F,连接AF求证:四边形AFED是菱形38如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:BCPDCP;(2)求证:DPE=ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图),若ABC=58°,则DPE= 度39在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长40数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点AEF=90°,且EF交正方形外角DCG的平分线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AMEECF,所以AE=EF在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一选择题(共14小题)1(2013宜宾)矩形具有而菱形不具有的性质是()A两组对边分别平行B对角线相等C对角线互相平分D两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误故选B【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键2(2014河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()AAB=BCBAC=BDCACBDDABBD【分析】根据对角线相等的平行四边形是矩形判断【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断故选B【点评】本题主要考查的是矩形的判定定理但需要注意的是本题的知识点是关于各个图形的性质以及判定3(2008扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A当AB=BC时,它是菱形B当ACBD时,它是菱形C当ABC=90°时,它是矩形D当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、四边形ABCD是平行四边形,BO=OD,ACBD,AB2=BO2+AO2,AD2=DO2+AO2,AB=AD,四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错4(2011张家界)顺次连接任意四边形四边中点所得的四边形一定是()A平行四边形B矩形C菱形D正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等所以是平行四边形【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点在ABD中,E、H是AB、AD中点,EHBD,EH=BD在BCD中,G、F是DC、BC中点,GFBD,GF=BD,EH=GF,EHGF,四边形EFGH为平行四边形故选:A【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半5(2006南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A(3,7)B(5,3)C(7,3)D(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3)【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),AB在x轴上,点C与点D的纵坐标相等,都为3,又D点相对于A点横坐标移动了20=2,C点横坐标为2+5=7,即顶点C的坐标(7,3)故选:C【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高6(2014河南)如图,ABCD的对角线AC与BD相交于点O,ABAC,若AB=4,AC=6,则BD的长是()A8B9C10D11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长【解答】解:ABCD的对角线AC与BD相交于点O,BO=DO,AO=CO,ABAC,AB=4,AC=6,BO=5,BD=2BO=10,故选:C【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单7(2013南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B处,若AE=2,DE=6,EFB=60°,则矩形ABCD的面积是()A12B24C12D16【分析】在矩形ABCD中根据ADBC得出DEF=EFB=60°,由于把矩形ABCD沿EF翻折点B恰好落在AD边的B处,所以EFB=DEF=60°,B=ABF=90°,A=A=90°,AE=AE=2,AB=AB,在EFB中可知DEF=EFB=EBF=60°故EFB是等边三角形,由此可得出ABE=90°60°=30°,根据直角三角形的性质得出AB=AB=2,然后根据矩形的面积公式列式计算即可得解【解答】解:在矩形ABCD中,ADBC,DEF=EFB=60°,把矩形ABCD沿EF翻折点B恰好落在AD边的B处,DEF=EFB=60°,B=ABF=90°,A=A=90°,AE=AE=2,AB=AB,在EFB中,DEF=EFB=EBF=60°EFB是等边三角形,RtAEB中,ABE=90°60°=30°,BE=2AE,而AE=2,BE=4,AB=2,即AB=2,AE=2,DE=6,AD=AE+DE=2+6=8,矩形ABCD的面积=ABAD=2×8=16故选D【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键8(2013扬州)如图,在菱形ABCD中,BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则CDF等于()A50°B60°C70°D80°【分析】连接BF,根据菱形的对角线平分一组对角求出BAC,BCF=DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出ABF=BAC,从而求出CBF,再利用“边角边”证明BCF和DCF全等,根据全等三角形对应角相等可得CDF=CBF【解答】解:如图,连接BF,在菱形ABCD中,BAC=BAD=×80°=40°,BCF=DCF,BC=DC,ABC=180°BAD=180°80°=100°,EF是线段AB的垂直平分线,AF=BF,ABF=BAC=40°,CBF=ABCABF=100°40°=60°,在BCF和DCF中,BCFDCF(SAS),CDF=CBF=60°故选:B【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键9(2015河南)如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若BF=6,AB=5,则AE的长为()A4B6C8D10【分析】由基本作图得到AB=AF,加上AO平分BAD,则根据等腰三角形的性质得到AOBF,BO=FO=BF=3,再根据平行四边形的性质得AFBE,所以1=3,于是得到2=3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长【解答】解:连结EF,AE与BF交于点O,如图,AB=AF,AO平分BAD,AOBF,BO=FO=BF=3,四边形ABCD为平行四边形,AFBE,1=3,2=3,AB=EB,而BOAE,AO=OE,在RtAOB中,AO=4,AE=2AO=8故选C【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分也考查了等腰三角形的判定与性质和基本作图10(2013凉山州)如图,菱形ABCD中,B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A14B15C16D17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可【解答】解:四边形ABCD是菱形,AB=BC,B=60°,ABC是等边三角形,AC=AB=4,正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长11(2013泰安)如图,在平行四边形ABCD中,AB=4,BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DGAE,垂足为G,若DG=1,则AE的边长为()A2B4C4D8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长【解答】解:AE为DAB的平分线,DAE=BAE,DCAB,BAE=DFA,DAE=DFA,AD=FD,又F为DC的中点,DF=CF,AD=DF=DC=AB=2,在RtADG中,根据勾股定理得:AG=,则AF=2AG=2,平行四边形ABCD,ADBC,DAF=E,ADF=ECF,在ADF和ECF中,ADFECF(AAS),AF=EF,则AE=2AF=4故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键12(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A16B17C18D19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,AC=2CD,CD=2,EC2=22+22,即EC=;S2的面积为EC2=8;S1的边长为3,S1的面积为3×3=9,S1+S2=8+9=17故选:B【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力13(2013连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且BAE=22.5°,EFAB,垂足为F,则EF的长为()A1BC42D34【分析】根据正方形的对角线平分一组对角可得ABD=ADB=45°,再求出DAE的度数,根据三角形的内角和定理求AED,从而得到DAE=AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解【解答】解:在正方形ABCD中,ABD=ADB=45°,BAE=22.5°,DAE=90°BAE=90°22.5°=67.5°,在ADE中,AED=180°45°67.5°=67.5°,DAE=AED,AD=DE=4,正方形的边长为4,BD=4,BE=BDDE=44,EFAB,ABD=45°,BEF是等腰直角三角形,EF=BE=×(44)=42故选:C【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点14(2014福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则BFC为()A45°B55°C60°D75°【分析】根据正方形的性质及全等三角形的性质求出ABE=15°,BAC=45°,再求BFC【解答】解:四边形ABCD是正方形,AB=AD,又ADE是等边三角形,AE=AD=DE,DAE=60°,AB=AE,ABE=AEB,BAE=90°+60°=150°,ABE=(180°150°)÷2=15°,又BAC=45°,BFC=45°+15°=60°故选:C【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出ABE=15°二填空题(共13小题)15(2008恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2故答案为:24【点评】此题主要考查菱形的面积等于两条对角线的积的一半16(2015梅州)如图,在ABCD中,BE平分ABC,BC=6,DE=2,则ABCD的周长等于20【分析】根据四边形ABCD为平行四边形可得AEBC,根据平行线的性质和角平分线的性质可得出ABE=AEB,继而可得AB=AE,然后根据已知可求得结果【解答】解:四边形ABCD为平行四边形,AEBC,AD=BC,AB=CD,AEB=EBC,BE平分ABC,ABE=EBC,ABE=AEB,AB=AE,AE+DE=AD=BC=6,AE+2=6,AE=4,AB=CD=4,ABCD的周长=4+4+6+6=20,故答案为:20【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出ABE=AEB17(2013厦门)如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,OAB的周长是18厘米,则EF=3厘米【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是OAB的中位线即可得出EF的长度【解答】解:四边形ABCD是平行四边形,OA=OC,OB=OD,又AC+BD=24厘米,OA+OB=12cm,OAB的周长是18厘米,AB=6cm,点E,F分别是线段AO,BO的中点,EF是OAB的中位线,EF=AB=3cm故答案为:3【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质18(2007临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3【分析】根据矩形是中心对称图形寻找思路:AOECOF,图中阴影部分的面积就是BCD的面积【解答】解:四边形ABCD是矩形,OA=OC,AEO=CFO;又AOE=COF,在AOE和COF中,AOECOF,SAOE=SCOF,图中阴影部分的面积就是BCD的面积SBCD=BC×CD=×2×3=3故答案为:3【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键19(2014宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(2,0),点D在y轴上,则点C的坐标是(5,4)【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标【解答】解:菱形ABCD的顶点A,B的坐标分别为(3,0),(2,0),点D在y轴上,AB=5,DO=4,点C的坐标是:(5,4)故答案为:(5,4)【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键20(2015黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E若CBF=20°,则AED等于65度【分析】根据正方形的性质得出BAE=DAE,再利用SAS证明ABE与ADE全等,再利用三角形的内角和解答即可【解答】解:正方形ABCD,AB=AD,BAE=DAE,在ABE与ADE中,ABEADE(SAS),AEB=AED,ABE=ADE,CBF=20°,ABE=70°,AED=AEB=180°45°70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出BAE=DAE,再利用全等三角形的判定和性质解答21(2013十堰)如图,ABCD中,ABC=60°,E、F分别在CD和BC的延长线上,AEBD,EFBC,EF=,则AB的长是1【分析】根据平行四边形性质推出AB=CD,ABCD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长【解答】解:四边形ABCD是平行四边形,ABDC,AB=CD,AEBD,四边形ABDE是平行四边形,AB=DE=CD,即D为CE中点,EFBC,EFC=90°,ABCD,DCF=ABC=60°,CEF=30°,EF=,CE=2,AB=1,故答案为:1【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目22(2013黔西南州)如图所示,菱形ABCD的边长为4,且AEBC于E,AFCD于F,B=60°,则菱形的面积为【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可【解答】解:菱形ABCD的边长为4,AB=BC=4,AEBC于E,B=60°,sinB=,AE=2,菱形的面积=4×2=8,故答案为8【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用23(2013鞍山)如图,D是ABC内一点,BDCD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解【解答】解:BDCD,BD=4,CD=3,BC=5,E、F、G、H分别是AB、AC、CD、BD的中点,EH=FG=AD,EF=GH=BC,四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又AD=6,四边形EFGH的周长=6+5=11故答案为:11【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键24(2015攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点若POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4)【分析】由矩形的性质得出OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:当PO=PD时;当OP=OD时;当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标【解答】解:四边形OABC是矩形,OCB=90°,OC=4,BC=OA=10,D为OA的中点,OD=AD=5,当PO=PD时,点P在OD得垂直平分线上,点P的坐标为:(2.5,4);当OP=OD时,如图1所示:则OP=OD=5,PC=3,点P的坐标为:(3,4);当DP=DO时,作PEOA于E,则PED=90°,DE=3;分两种情况:当E在D的左侧时,如图2所示:OE=53=2,点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4)【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果25(2013阜新)如图,已知ABC的三个顶点的坐标分别为A(2,0),B(1,2),C(2,0)请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标(3,2),(5,2),(1,2)【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(5,2),(1,2)故答案为:(3,2),(5,2),(1,2)【点评】此题考查了平行四边形的性质注意坐标与图形的关系26(2014丹东)如图,在菱形ABCD中,AB=4cm,ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒DEF为等边三角形,则t的值为