欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    概率论重点及课后题答案9.doc

    • 资源ID:4124569       资源大小:1.47MB        全文页数:28页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论重点及课后题答案9.doc

    第九章假设检验一、大纲要求(1)理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。(2)了解单个及两个正态总体的均值和方差的假设检验.二、重点知识结构图第一类错误:为真拒绝第二类错误:为假接受1.提出假设2.找统计量3.求临界值4.求观察值5.作出判断检验法检验法检验法检验法假设检验基本步骤两类错误正态总体的均值和方差的检验三、基本知识1.假设检验的几个术语定义1给定,不等式确定了关于的一个区域当落入此区域内,就拒绝 (接受),称上式这类区域为的拒绝域,记为.不等式确定了关于的另外一个区域当落入此区域内,就接受 (拒绝),称上类区域为接受域,记为.不等式称为临界值形式的接受域,称为区间形式的接受域.定义2称为原假设(或零假设),称为备择假设(或备选假设、对立假设).定义3称允许作判断有错误的概率为显著性水平(或检验水平),它是用来衡量原假设与实际情况差异是否明显的标准.定义4称为临界值小概率原理:小概率事件在一次试验中是不大会发生的.2.假设检验的两类错误第一类错误:正确,但拒绝了它,这类错误称为“弃真错误”.第二类错误:不正确,但接受了它,这类错误称为“存伪错误”.3.假设检验的基本步骤(1)提出假设;(2)找统计量(这里要求该统计量含有待检验的参数);(3)求临界值(求接受域);(4)求观察值;(5)作出判断.4.检验法已知方差,假设检验.(1)提出假设.(2)找统计量.确定样本函数:,称其为的统计量,它含有待检验参数.(3)求临界值.给定显著性水平,查正态分布表求出临界值,使,即.(4)求观察值.根据给定的样本求出统计量的观察值.(5)作出判断.若,则接受;若,则拒绝.5.检验法未知方差,假设检验.(1)提出假设.(2)找统计量.因为未知,这时已不是统计量,所以不能用检验法,这里用来代替,找出统计量:.(3)求临界值.对给定显著性水平,由分布表查得临界值,使.(4)求观察值.根据给定的样本算出统计量的观察值.(5)作出判断.若,则接受;若,则拒绝.6.检验法已知期望,假设检验.(1)提出假设.(2)找统计量.确定样本函数的统计量:(3)求临界值.对给定显著性水平,由分布表查得临界值与,使即(4)求观察值.根据给定的样本算出统计量的观察值.(5)作出判断.若,则接受;若或,则拒绝.7.检验法已知期望,假设检验(1)提出假设.(2)找统计量 (3)求临界值.对给定显著性水平,查分布表,求得及,使即 (4)求观察值.由所给定的样本算出统计量的值.(5)作出判断.若,则接受;若或,则拒绝.四、典型例题例1有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本;第二批棉纱样本.试验证两批棉纱断裂强度的均值有无显著差异(检验水平)?如果呢?解这是两个正态总体的均值检验问题,检验.因为是大样本(均较大),所以、可用代入,近似有故由于与相互独立,若成立,则故因此,只要是大样本(容量较大时),不管总体、是否服从正态分布,是否,都可以按检验法已知的情况去做近似检验.由已知得故当时,查表得.因,故被接受,即在检验水平下可以认为这两种棉纱的强力值无显著差异.当时,查表得.因,落入拒绝域,应否定,即在检验水平下可以认为这两种棉纱的强力值有显著差异.例2某农业试验站为了研究某种新化肥对农作物产量的效力,在若干小区进行试验.测得产量(单位:kg)如下:施肥34 35 32 33 30 34未施肥 29 27 32 28 31 32 31设农场的产量服从正态分布,检验该种化肥对提高产量的效力是否显著?解设为施肥后的产量,为施肥前的产量.已知.由于总体方差和均未知,应先对方差进行检验,即,.由题意可知已知,查表得.因为,所以接受,即认为.提出检验问题,即已知,查表得.因为,所以拒绝,即认为该种化肥对提高产量的效力显著.例3某种配偶的后代按体格的属性分为三类,各类的数据是:10,53,46.按照某种遗传模型,其频率之比应为,问数据与模型是否相符?解令,欲检验的假设为:数据与模型相符.设观察到的三类数量分别为,其中,则的似然函数为由于解得的极大似然估计为从而统计量观测值为已知,自由度,查表得由于,故接受,即数据与模型相符.例4设某次考试考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在时是否可以认为这次考试全体考生的平均成绩为70分?解设该次考试考生的成绩为,则.把从中抽取的容量为的样本均值记为,样本标准差记为,检验假设.则已知,所以所以接受假设,即时,可以认为这次考试全体考生的平均成绩为70分.例5某一指标服从正态分布,今对该指标测量8次,所得数据为:68,43,70,65,55,56,60,72.在以下两种条件下,检验.(1)总体均值未知;(2)总体均值.解 (1)检验假设,用检验,得故查表得.因,故接受.(2)检验假设,而,故由于,故接受.例6从某锌矿的东西两支矿脉中,各抽取容量分别为9和8的样本分析后,计算其样本含锌量(%)的平均值与方差分别如下:东支西支假定东西两支矿脉的含锌量都服从正态分布,对于,能否认为两支矿脉的含锌量相同?解设东支矿脉的含锌量为,;西支矿脉的含锌量为,;其中、均为未知参数.(1)检验假设.则已知,计算得查表得因,故接受假设,即认为.(2)检验假设,这属于检验,检验统计量为已知,计算得查表得.因,故接受假设,即认为两支矿脉的含锌量相同.例7在20世纪70年代后期人们发现,酿啤酒时,在麦芽糖干燥过程中会形成致癌物质亚硝基二甲胺(NDMA),于是80年代初期开发了一种新的麦芽糖干燥过程.下面给出分别在新老两种过程中所形成的(NDMA)含量(以10亿份中的份数计).老过程6 4 5 5 6 5 5 6 4 6 7 4新过程2 1 2 2 1 0 3 2 1 0 1 3设两样本分布来自正态总体,两总体方差相等,两样本独立,分别以、记对应于新老两过程的总体均值,检验假设.解该检验的拒绝域为已知,查表得.由已知数据计算得由于在拒绝域中,故应拒绝.例8某厂使用两种不同的原料A、B生产同一类产品,各在一周的产品中取样进行分析比较,取使用原料A生产的样品220件,测得平均重量为2.46kg,样本标准差;取使用原料B生产的样品205件,测得平均重量为2.55kg,样本标准差,设这两个样本独立,问在下能否认为使用原料B的产品平均重量比使用原料A大?解检验假设.这个问题是大样本问题,故可近似认为统计量:于是检验的拒绝域为已知,所以由于落在拒绝域中,故应拒绝,即认为使用原料B的产品平均重量比使用原料A的大.例9某种导线,要求其电阻的标准差不得超过0.005(单位:).今在生产的一批导线中取样本9根,测得,设总体为正态分布,问在下能否认为这批导线的标准差显著地偏大?解检验假设.该检验的拒绝域为已知,所以由于落在拒绝域中,故应拒绝,即在下这批导线的标准差显著偏大.例10一自动车床加工零件的长度服从正态分布,车床正常时,加工零件长度为10.5,经过一段时间生产后,要检验这车床是否正常工作,为此抽取该车床加工的31个零件,测得数据如下:零件长度 10.1 10.3 10.6 11.2 11.5 11.8 12.0频率 1 3 7 10 6 3 1若加工零件长度方差不变,问此车床工作是否正常?()解检验假设.则于是检验的拒绝域为已知,计算得.从而查表得.由于,故拒绝.即可以认为该车床工作不正常.例11某车间的白糖包装机包装量,其中,未知.一天开工后为检验包装量是否正常,抽取了已经装好的糖9袋,算得样本均值,样本标准差为,试确定包装机工作是否正常?()解检验假设(可省略).样本均值,样本方差.于是已知,查表得.由于,故接受.可认为包装机工作正常.例12某市居民上月平均伙食费为235.5元,随机抽取49个居民,他们本月的伙食费平均为236.5元,由这49个样本算出的标准差元.假设该市居民月伙食费方差正态分布,试分别在和时,检验“本月该市居民平均伙食费较之上个月无变化”的假设.解检验假设.由于方差未知,故采用检验法,其拒绝域为已知,计算得由于,故可用代替.当时,故应拒绝.即本月该市居民平均伙食费较之上个月有显著升高.当时,故接受.即本月该市居民平均伙食费较之上个月无显著变化.例13一位研究者声称至少有80%的观众对商业广告感到厌烦,现在随机询问了120位观众,其中70人同意此观点,在时,问是否可同意该研究者的观点?解把“观众对商业广告感到厌烦”(即)作为原假设.本问题的归结为在时,检验假设.设随机向量在为真时,为来自总体服从两点分布的一个样本,且.由于较大,由中心极限定理可知于是检验的拒绝域为已知,计算得故拒绝,即在此数据的基础上,不能同意该研究者的观点.五、课本习题全解9-1 提出假设.找统计量.求临界值.对给定的,查表得;对给定的,查表得.求观察值.作出判断.当时,所以拒绝;当时,所以接受.9-2 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以拒绝.9-3 (1)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以拒绝.(2)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-4 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-5 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当,所以拒绝.9-6 (1)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受. (2)提出假设.找统计量. .求临界值.对给定的,查表得.求观察值. .作出判断.当时,所以接受.9-7 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以拒绝,有显著差异.9-8 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受,即可认为溶化时间的标准差为9.9-9 (1)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受,即包装机工作正常.(2)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-10 (1)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.(2)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-11 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以拒绝.9-12 (1)提出假设.找统计量.求临界值.对给定的,查表得求观察值.作出判断.当时,所以接受.(2)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-13 (1)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.(2)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以拒绝.9-14 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-15 (1)提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以拒绝.(2)提出假设.找统计量.求临界值.对给定的,查表得求观察值.作出判断.当时,所以拒绝.9-16 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-17 提出假设.找统计量.求临界值.对给定的,查表得.求观察值.作出判断.当时,所以接受.9-18 根据题目要求,考虑假设检验.其中服从泊松分布,其分布律为的极大似然估计为样本均值,其观察值为则统计量为其中,是按的泊松分布律计算出的的取值为0,1,2,3,4这五种情况的概率.查表得,故接受.9-19 根据题目要求,考虑假设检验,其中服从等概率分布,其分布律为由观测数据得,则统计量为其中.查表得,故接受.六、自测题及答案1.设总体是来自的样本,记,当和未知时,则 (1)检验假设所使用的统计量是.(2)检验假设所使用的统计量是.2.设总体服从正态分布,方差未知,对假设进行假设检验时,通常采取的统计量是,服从分布,自由度是.3.在检验时,用统计量,若时,用检验,它的拒绝域为.若时,用检验,它的拒绝域为.4.设总体,设假设检验的拒绝域为,则犯第一类错误的概率为;犯第二类错误的概率为.5.某加工厂生产一批轴承,质量检查规定,废品率不超过3%可以出厂,否则不能出厂.现从这批产品中抽查100件,发现有5件废品.为判断这批产品能否出厂,要求检验的假设为;在显著性水平下,选定的统计量为,其观测值为;该统计量近似服从分布,拒绝域为.6.设总体,和未知,假设检验.若采用检验法,则在显著性水平之下,其拒绝域为( ).(A) (B)(C) (D)7.设和是来自正态总体的样本均值和样本方差,样本容量为,为( ).(A)的拒绝域 (B)的接受域(C)的一个置信区间 (D)的一个置信区间8.设总体,其中未知,假设检验.若取得显著性水平,则其拒绝域为( ).(A) (B)(C) (D)9.对正态分布的数学期望进行假设检验,如果在显著性水平0.05下接受,那么在显著性水平0.01下,下列结论中正确的是( ).(A)必接受 (B)可能接受,也可能拒绝(C)必拒绝 (D)不接受,也不拒绝10.自动包装机装出的每袋重量服从正态分布,规定每袋重量的方差不超过,为了检查自动包装机的工作是否正常,对它生产的产品进行抽样检查,假设检验,则下列命题正确的是( ).(A)如果生产正常,则检测结果也认为生产正常的概率为0.95(B)如果生产不正常,则检测结果也认为生产不正常的概率为0.95(C)如果检测结果认为生产正常,则生产确实正常的概率为0.95(D)如果检测结果认为生产不正常,则生产确实不正常的概率为0.9511.设为正态总体中抽取的样本,在显著性水平下检验.取拒绝域为.试求当时,所烦的第二类错误的概率.12.甲、乙两台机床生产同一型号的滚球,现从这两台机床的产品中分别抽取8个和9个,测得滚球珠的直径(单位:mm)如下:甲机床 15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8乙机床 15.2 15.0 14.8 15.2 15.0 14.8 15.1 14.8设滚珠直径服从正态分布,问乙机床的加工精度是否比甲机床高()?13.一种元件,要求其使用寿命不得低于1000h,现在从一批这种元件中随机地抽取25件,测得其寿命平均值为950h,已知该元件寿命服从标准差的正态分布,试在下,确定该批元件是否合格?14.某台机器加工某种零件,规定零件长度为100cm,标准差不得超过2cm,每天定时检查机器运行情况,某日抽取10个零件,取到平均长度,样本标准差为,设加工的零件长度服从正态分布.问该日机器工作状况是否正常()?15.甲、乙相邻两地段各取了50块和52块岩心进行磁化率测定,算出样本标准差分别为,试问甲、乙两段的标准差是否有显著差异()?16.在集中教育开课前对学员进行测验,过了一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解学员两次考试的分数是否有差别().从两次考卷中随机抽取12份考试成绩,如下表:考查次数考分总计平均第1次 80.5 91.0 81.0 85.0 70.0 86.0 69.5 74.0 72.5 83.0 69.0 78.5 940 78.5第2次 76.0 90.0 91.5 73.0 64.5 77.5 81.0 83.5 86.0 78.5 85.0 73.5 960 80.0答案1.(1)当未知时,检验假设,应选服从个自由度的分布统计量,其中为样本标准差.于是.(2)检验假设,应选统计量.2.;分布;.3.双边;左边;.4.5.6.的含义为.7.由可知,.故A项正确.8.由于,故B项正确.9.检验水平越小,接受域的范围越大,也就是说,在下的接受域包含在下的接受域.如果在时,接受,即样本值落在接受域内,则此样本值也一定落在的接受域内,因此接受.即A项正确.10.因为,从而,因而A项正确.而B、C、D三项分别反映的是条件概率、,由假设检验中犯两类错误的概率之间的关系知,这些概率一般不能由唯一确定,故B、C、D三项不正确.11.第二类错误的为.当时,来自,此时因此12.设甲、乙机床生产的滚珠直径分别为,检验乙机床的加工精度是否比甲机床高,即看是否比小.此问题归结为在下,检验假设.容易想到用统计量,但是在为真时,不知其服从什么分布,只知随机变量而对于,有即事件是一个小概率事件,可惜乙机床计算不出来.但因与有关,在为真时,有故事件从而于是仍选用作为检验的统计量.的拒绝域为.已知,得,又查表得.由于,故拒绝.即认为乙机床的加工精度比甲机床的高.13.在下,检验假设.由于已知,故拒绝域为已知,得故拒绝,即认为这批元件不合格.14.设加工的零件长度为,且,、均未知.(1)检验假设.这是检验问题,当成立时,统计量为于是拒绝域为已知,得已知,查表得,由于,故接受假设,即认为.(2)检验假设.这是检验问题,当成立时,统计量为于是拒绝域为计算得已知,查表得,由于,故接受假设,即认为.综合(1)(2),可以认为该机器工作状态正常.15.假设检验,则有由于统计量.查表得故.因为,所以拒绝假设,即认为甲、乙段岩心磁化率,测定数据的标准差在时有显著差异.16.此为双正态总体方差的假设检验,两总体均值未知,要检验假设选取统计量于是拒绝域为由题意可知因此查表得.由于,故在下,接受,即认为两次考试中学员的成绩无显著差异.部分文档在网络上收集,请下载后24小时内删除,不得传播,不得用于商业目的,如有侵权,请联系本人。谢谢

    注意事项

    本文(概率论重点及课后题答案9.doc)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开