CPS(信息物理融合系统).doc
维基百科(http:/en.wikipedia.org/wiki/Cyber-physical_system)的定义是:A cyber-physical system (CPS) is a system featuring a tight combination of, and coordination between, the systems computational and physical elements. Today, a pre-cursor generation of cyber-physical systems can be found in areas as diverse as aerospace, automotive, chemical processes, civil infrastructure, energy, healthcare, manufacturing, transportation, entertainment, and consumer appliances. This generation is often referred to as embedded systems. In embedded systems the emphasis tends to be more on the computational elements, and less on an intense link between the computational and physical elements.Unlike more traditional embedded systems, a full-fledged CPS is typically designed as a network of interacting elements with physical input and output instead of as standalone devices.1 The notion is closely tied to concepts of robotics and sensor networks. The expectation is that in the coming years ongoing advances in science and engineering will improve the link between computational and physical elements, dramatically increasing the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. The advances will broaden the potential of cyber-physical systems in several dimensions, including: intervention (e.g., collision avoidance); precision (e.g., robotic surgery and nano-level manufacturing); operation in dangerous or inaccessible environments (e.g., search and rescue, firefighting, and deep-sea exploration); coordination (e.g., air traffic control, war fighting); efficiency (e.g., zero-net energy buildings); and augmentation of human capabilities (e.g., healthcare monitoring and delivery)。信息-物理融合系统CPS是一个综合计算、网络和物理环境的多维复杂系统,通过3C(Computation、Communication、Control)技术的有机融合与深度协作,实现大型工程系统的实时感知、动态控制和信息服务。CPS实现计算、通信与物理系统的一体化设计,可使系统更加可靠、高效、实时协同,具有重要而广泛的应用前景。近年来,CPS不仅已成为国内外学术界和科技界研究开发的重要方向,预计也将成为企业界优先发展的产业领域。开展CPS研究与应用对于加快我国培育推进工业化与信息化融合具有重要意义。信息物理融合系统CPS( Cyber-Physical System )是一个综合计算、网络和物理环境的多空间复杂系统,通过3C( Computation、Communication、Control)技术的有机融合与深度协作,实现大型物理与信息交互系统的实时感知、动态控制和信息服务。CPS实现计算、通信技术与物理工程的一体化设计,可使大型系统更加安全高效,协同工作,实现新的高级功能,具有重要而广泛的应用前景。 近年来CPS不仅成为国际学术界与科技界研究和开发的重要方向,也成为企业界优先发展的产业领域,更是各国政府大力推进使之成为继计算机、互联网之后世界信息产业的第三次浪潮。CPS的研究与应用对于我国抓住机遇,推动科技进步,实施工业化与信息化融合的发展战略具有重要意义。Cyber-physical systemFrom Wikipedia, the free encyclopediaJump to: navigation, search A cyber-physical system (CPS) is a system featuring a tight combination of, and coordination between, the systems computational and physical elements. Today, a pre-cursor generation of cyber-physical systems can be found in areas as diverse as aerospace, automotive, chemical processes, civil infrastructure, energy, healthcare, manufacturing, transportation, entertainment, and consumer appliances. This generation is often referred to as embedded systems. In embedded systems the emphasis tends to be more on the computational elements, and less on an intense link between the computational and physical elements.Unlike more traditional embedded systems, a full-fledged CPS is typically designed as a network of interacting elements with physical input and output instead of as standalone devices.1 The notion is closely tied to concepts of robotics and sensor networks. The expectation is that in the coming years ongoing advances in science and engineering will improve the link between computational and physical elements, dramatically increasing the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. The advances will broaden the potential of cyber-physical systems in several dimensions, including: intervention (e.g., collision avoidance); precision (e.g., robotic surgery and nano-level manufacturing); operation in dangerous or inaccessible environments (e.g., search and rescue, firefighting, and deep-sea exploration); coordination (e.g., air traffic control, war fighting); efficiency (e.g., zero-net energy buildings); and augmentation of human capabilities (e.g., healthcare monitoring and delivery).2The US National Science Foundation (NSF) has identified cyber-physical systems as a key area of research.3 Starting in late 2006, the NSF and other United States federal agencies sponsored several workshops on cyber-physical systems.45678910ExamplesCommon applications of CPS typically fall under sensor-based systems and autonomous systems. For example, many wireless sensor networks monitor some aspect of the environment and relay the processed information to a central node. Other types of CPS include autonomous automotive systems, medical monitoring, process control systems, distributed robotics, and automatic pilot avionics.A real-world example of such a system is the Distributed Robot Garden at MIT in which a team of robots tend a garden of tomato plants. This system combines distributed sensing (each plant is equipped with a sensor node monitoring its status), navigation, Manipulation and wireless networking.Another example is MIT's ongoing CarTel project where a fleet of taxis collecting real-time traffic information in the Boston area. Together with historical data, this information is then used for calculating fastest routes for a given time of the day.References1. Lee, Edward (January 23, 2008). Cyber Physical Systems: Design Challenges. University of California, Berkeley Technical Report No. UCB/EECS-2008-8. http:/www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html. Retrieved 2008-06-07. 2. "Cyber-physical systems". Program Announcements & Information. The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA. 2008-09-30. http:/www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf08611. Retrieved 2009-07-21. 3. Wolf, Wayne (November 2007). "The Good News and the Bad News (Embedded Computing Column". IEEE Computer. puter.org/portal/site/computer/menuitem.5d61c1d591162e4b0ef1bd108bcd45f3/index.jsp?&pName=computer_level1_article&TheCat=1085&path=computer/homepage/Nov07&file=embedded.xml&xsl=article.xsl. Retrieved 2008-06-09. 4. "NSF Workshop On Cyber-Physical Systems". http:/varma.ece.cmu.edu/cps. Retrieved 2008-06-09. 5. "Beyond SCADA: Networked Embedded Control for Cyber Physical Systems". http:/www.truststc.org/scada/. Retrieved 2008-06-09. 6. "NSF Cyber-Physical Systems Summit". http:/varma.ece.cmu.edu/Summit. Retrieved 2008-08-01. 7. "National Workshop on High-Confidence Automotive Cyber-Physical Systems". http:/varma.ece.cmu.edu/Auto-CPS. Retrieved 2008-08-03. 8. "National Workshop on Composable and Systems Technologies for High-Confidence Cyber-Physical Systems,". http:/www.isis.vanderbilt.edu/CST-HCCPS/. Retrieved 2008-08-04. 9. "National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems (HCSP-CPS),". http:/www.isis.vanderbilt.edu/HCSP-CPS/. Retrieved 2008-08-04. 10. "New Research Directions for Future Cyber-Physical Energy Systems". http:/www.ece.cmu.edu/nsf-cps/. Retrieved 2009-06-05. Further readingNSF Workshop On Cyber-Physical Systems · Edward A. Lee, Cyber-Physical Systems - Are Computing Foundations Adequate? · Paulo Tabuada, Cyber-Physical Systems: Position Paper · Rajesh Gupta, Programming Models and Methods for Spatio-Temporal Actions and Reasoning in Cyber-Physical Systems · CPS Community, CPS Workshops Cyber-physical systemA cyber-physical system (CPS) is a system featuring a tight combination of, and coordination between, the systems computational and physical elements. Today, a pre-cursor generation of cyber-physical systems can be found in areas as diverse as aerospace, automotive, chemical processes, civil infrastructure, energy, healthcare, manufacturing, transportation, entertainment, and consumer appliances. This generation is often referred to as embedded systems. In embedded systems the emphasis tends to be more on the computational elements, and less on an intense link between the computational and physical elements. Unlike more traditional embedded systems, a full-fledged CPS is typically designed as a network of interacting elements instead of as standalone devices. The expectation is that in the coming years ongoing advances in science and engineering will improve the link between computational and physical elements, dramatically increasing the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. The advances will broaden the potential of cyber-physical systems in several dimensions, including: intervention (e.g., collision avoidance); precision (e.g., robotic surgery and nano-level manufacturing); operation in dangerous or inaccessible environments (e.g., search and rescue, firefighting, and deep-sea exploration); coordination (e.g., air traffic control, war fighting); efficiency (e.g., zero-net energy buildings); and augmentation of human capabilities (e.g., healthcare monitoring and delivery). The US National Science Foundation (NSF) has identified cyber-physical systems as a key area of research. Starting in late 2006, the NSF and other United States federal agencies sponsored several workshops on cyber-physical systems. Examples: Common applications of CPS typically fall under sensor-based systems and autonomous systems. For example, many wireless sensor networks monitor some aspect of the environment and relay the processed information to a central node. Other types of CPS include autonomous automotive systems, medical monitoring, process control systems, distributed robotics, and automatic pilot avionics. A real-world example of such a system is the Distributed Robot Garden at MIT in which a team of robots tend a garden of tomato plants. This system combines distributed sensing (each plant is equipped with a sensor node monitoring its status), navigation, Manipulation and wireless networking. Another example is MIT's ongoing CarTel project where a fleet of taxis collecting real-time traffic information in the Boston area. Together with historical data, this information is then used for calculating fastest routes for a given time of the day.信息化的实体系统(Cyber-Physical Systems)(100409) 信息化的实体系统(Cyber-Physical Systems)(100409)闵应骅 2006年美国总统科技顾问委员会在报告中把Cyber-Physical Systems,CPS列为第一优先的研究课题。10月16-17日美国国家科学基金会办了一个研讨会,研究这一个新的热门研究方向。这个词至今没有一个合适的中文翻译。我这里基本上按意译,翻成“信息化的实体系统”。是否合适,欢迎指正。 人类生活在一个实体世界里,现在面临着能源、人口、环境等许多问题。近年来,网络的兴起又让人们生活在信息世界里。信息世界五彩斑斓,什么都有。但是,实体世界里的问题,用信息化的办法能不能有所帮助呢? 信息化的实体系统是一种实体的工程系统,它的运作有一个计算核来集成、管理和控制。该计算核是嵌入式的,一般要求实时,分布式而且可重构。这种系统的信息部件和实体部件共同控制系统功能,共同实现实时、节能,它们相互作用、相互依赖。信息化实体系统的例子有生物技术系统、医疗系统、防卫系统、汽车和高速公路、机器人制造、航空航天关键基础设施等。人们对复杂的动态的干细胞微环境的了解还很有限,对它的传感和控制需要研究。医疗的问题也在日趋严重。 传感器、执行机构和移动设备的通信和可用性需要无所不在的基础设施,包括全局和局部网络、用户、传感器、装置、系统和应用,以及它们的无缝连接。为此,可信计算提供安全、隐私和可靠的计算和通信服务将起到实质性的作用。 要把信息世界和实体世界联系起来,就不是个别行业、个别设备的问题了。它要求一个整体性的解决,许多问题要重新研究。例如程序语言和操作系统不能分开、需要高度并行化、要实时。系统的鲁棒性、安全性、可靠性必不可少。信息化实体系统与嵌入式系统不同,与某工厂、某行业的信息化不同就在于:它是一个统一的解决,而不是个别问题的解决。这就牵涉到一系列的技术问题,以及社会的结构与组织的大问题。嵌入式系统着重计算部件,而较少注意计算部件和实体部件之间的紧密联系。当然,这个问题很大,不知什么时候能解决。但它却指引了信息技术的一个发展方向。 本文引用地址: 转载Cyber-Physical system 简介 黄秋华CPS是一个综合计算、网络和物理环境的多维复杂系统,通过3C(Computation、Communication、Control)技术的有机融合与深度协作,实现大型工程系统的实时感知、动态控制和信息服务。CPS实现计算、通信与物理系统的一体化设计,可使系统更加可靠、高效、实时协同,具有重要而广泛的应用前景。近年来,CPS不仅已成为国内外学术界和科技界研究开发的重要方向,预计也将成为企业界优先发展的产业领域。开展CPS研究与应用对于加快我国培育推进工业化与信息化融合具有重要意义。 CPS系统把计算与通信深深地嵌入实物过程、使之与实物过程密切互动,从而给实物系统添加新的能力。这种CPS系统小如心脏起搏器,大如国家电网。由于计算机增强的(computer-augmented)的装置无处不在,CPS系统具有巨大的经济影响力。如家居、交通控制、安全、高级汽车、过程控制。环境控制、关键基础设施控制(电力、灌溉网络、通信系统)、分布式机器人、防御系统、制造业、智能构造、交通系统能够从智能汽车提高安全性和传送效率中有效地获益。家居技术将提高老人护理并有效控制与日俱增的护理花费。减少国家能源依赖。这很难估计为未来生活带来的积极地潜在的价值。但我们都知道的价值是巨大的。 微观与宏观的材料、受控组件、运行中的医疗装置与系统、下一代电网、未来防务系统、下一代汽车、智能高速公路、灵活的机器人主导的制造、下一代航空器、空域与天域管理系统等。美国国防部预先研究局(DARPA)认为:赛博-实物系统(cyber-physical system,CPS)是指这样的系统:其功能中的很大一部分是从软件与机电系统中导出的。事实上,所有的防务系统(如飞机、航天器、海军舰船、地面载具,等等)和系统的系统,都属于CPS。另外,集成电路、MEMS、NEMS也属于CPS CPS是物理过程和计算过程的集成系统,是人类通过CPS系统包含的数字世界和机械设备与物理世界进行交互,这种交互的主体既包括人类自身也包括在人的意图知道下的系统。而作用的客体包括真实世界的各方面:自然环境、建筑、机器、同时也包括人类自身等。CPS是可能是一个分布式异构系统,他不仅包含了许多功能不同的字系统,而且这些子系统之间结构和功能各异,而且分布在不同的地理范围内。各个子系统之间要通过有线或无线的通信方式相互协调工作。 CPS具有自适应性、自主性、高效性、功能性、可靠性、安全性等特点和要求。物理构建和软件构建必须能够在不关机或停机的状态下动态加入系统,同时保证满足系统需求和服务质量。比如一个超市安防系统,在加入传感器、摄像头、监视器等物理节点或者进行软件升级的过程中不需关掉整个系统或者停机就可以动态升级。CPS应该是一个智能的有自主行为的系统,不仅能够从环境中获取数据,进行数据融合,提取有效信息,并且根据系统规则通过效应器作用于环境。 最近还看了周海平教授的文章,连接为:还有几个有用的网页:1. 2. http:/en.wikipedia.org/wiki/Cyber-physical_system 本文引用地址: 信息物理系统(cyber physical systems)及其对复杂网络研究的影响 周海平 信息物理系统(cyber physical systems,简称CPS)作为计算进程和物理进程的统一体,是集成计算、通信与控制于一体的下一代智能系统。信息物理系统通过人机交互接口实现和物理进程的交互,使用网络化空间以远程的、可靠的、实时的、安全的、协作的方式操控一个物理实体。信息物理系统包含了将来无处不在的环境感知、嵌入式计算、网络通信和网络控制等系统工程,使物理系统具有计算、通信、精确控制、远程协作和自治功能。它注重计算资源与物理资源的紧密结合与协调,主要用于一些智能系统上如机器人,智能导航等。目前,信息物理系统还是一个比较新的研究领域。CPS:让地球互联起来 2005年5月,美国国会要求美国科学院评估美国的技术竞争力,并提出维持和提高这种竞争力的建议。5个月后,基于此项研究的报告站在风暴之上问世。在此基础上于2006年2月发布的美国竞争力计划则将信息物理系统(Cyber Physics System,CPS)列为重要的研究项目。到了2007年7月,美国总统科学技术顾问委员会(PCAST)在题为挑战下的领先竞争世界中的信息技术研发的报告中列出了8大关键的信息技术,其中CPS位列首位,其余分别是软件,数据、数据存储与数据流,网络,高端计算,网络与信息安全,人机界面,NIT与社会科学。 CPS的意义在于将物理设备联网,特别是连接到互联网上,使得物理设备具有计算、通信、精确控制、远程协调和自治等五大功能。本质上说,CPS是一个具有控制属性的网络,但它又有别于现有的控制系统。控制对于我们并不陌生。从二十世纪40年代麻省理工学院发明了数控技术到如今基于嵌入式计算系统的工业控制系统遍地开花,工业自动化早已成熟,基本是在人们日常居家生活中,各种家电具有控制功能。但是,这些控制系统基本是封闭的系统,即便其中一些工控应用网络也具有联网和通信的功能,但其工控网络内部总线大都使用的都是工业控制总线,网络内部各个独立的子系统或者说设备难以通过开放总线或者互联网进行互联,而且,通信的功能比较弱。而CPS则把通信放在与计算和控制同等地位上,这是因为CPS强调的分布式应用系统中物理设备之间的协调是离不开通信的。CPS对网络内部设备的远程协调能力、自治能力、控制对象的种类和数量,特别是网络规模上远远超过现有的工控网络。在资助CPS研究上扮演重要角色的美国国家科学基金会(NSF)认为,CPS将让整个世界互联起来。如同互联网改变了人与人的互动一样,CPS将会改变我们与物理世界的互动。CPS:通吃物联网? 当人们还陶醉在物联网能够把物与物连在一起时,没想到CPS又冒了出来,而物联网所擅长的基于RFID的连接,对于CPS来说太过简单。在很多应用中,CPS对接入网络的设备的计算能力的要求远非RFID能比。以基于CPS的智能交通系统为例,即便是现有的人们认为已经十分复杂的汽车电子系统也无法胜任,现在的汽车电子系统根本无法实现未来智能交通系统对汽车之间的协同能力的要求。事实上,满足CPS要求的汽车电子系统的计算通常都是海量运算,就算现有的汽车电子系统中的嵌入式计算机的性能也相差甚远。海量运算往往是很多CPS接入设备的特征,因此,接入设备通常具有强大的计算能力。如果从计算性能的角度出发,把一些高端的CPS应用比作胖客户机/服务器架构的话,那么物网则可视为超级瘦客户机服务器,因为物联网中的物品不具备控制和自治能力,通信也大都发生在物品与服务器之间,因此物品之间无法进行协同。 实际上,CPS并不排斥物联网。应该说,物联网是CPS的一种简约应用,或者说,CPS让物联网的定义和概念明晰起来。物联网其实就是以物流领域为主的应用。物与物之间的互联无非“各报家门”知道对方“何许人也”这么简单。CPS中的物理设备指的是自然界中的客体,因此不仅指的是冷冰冰的设备,而且还包括活生生的生物。现有互联网的边界是各种终端设备,人们与互联网之间是通过这些终端来进行信息交换的。而在CPS中,人则成为CPS网络的“接入设备”,这种信息的交互可能是通过芯片与人的神经系统直接互联实现的。针对本文开头所说的情形,我们甚至可以做这样的假设,当智能交通系统感知到高速行驶的汽车与将要穿越马路的行人之间存在发生碰撞的机会,通常的做法是系统让汽车来个急刹车,或者告诉行人“留步”,而更直接的方法是通过脑-机接口Brain Machine Interface)让人“不走脑袋”地或者无须思考就来个“立定”,从而避开事故的发生。 尽管在物联网中也有把RIFD芯片嵌入到人体中,但本质上还是RFID与读写器之间的通信,人并没有介入其中。感知在CPS中十分重要。众所周知,自然界中各种物理量的变化绝大多数是连续的,或者说是模拟的,而信息空间则充斥着离散量,或者说数字的。那么从物理空间到信息空间的信息流动,首先必须通过各种类型的传感器将各种物理量转变成模拟量,再通过模拟/数字转换器变成数字量,从而为信息空间所接受。从这个意义上说,传感器网络也可视为CPS的一部分。 CPS:机遇与挑战 如果物联网的市场规模