欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    2020浙教版九年级数学上-圆的知识点总结及习题.doc

    • 资源ID:4117188       资源大小:398KB        全文页数:8页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020浙教版九年级数学上-圆的知识点总结及习题.doc

    【文库独家】圆的总结 圆与三角形、四边形一样都是研究相关图形中的线、角、周长、面积等知识。包括性质定理与判定定理及公式。一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C在圆内点在圆上 d=r 点B在圆上点在此圆外 d>r 点A在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 有两个交点3 圆与圆的位置关系:外离(图1) 无交点 d>R+r外切(图2) 有一个交点 d=R+r相交(图3) 有两个交点 R-r<d<R+r内切(图4) 有一个交点 d=R-r内含(图5) 无交点 d<R-r四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: AB是直径 ABCD CE=DE 推论2:圆的两条平行弦所夹的弧相等。 即:在O中,ABCD五 圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论也即:AOB=DOE AB=DE OC=OF 六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:AOB和ACB是 所对的圆心角和圆周角 AOB=2ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在O中,C、D都是所对的圆周角 C=D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在O中,AB是直径 或C=90° C=90° AB是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在ABC中,OC=OA=OB ABC是直角三角形或C=90°注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。七 圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在O中,四边形ABCD是内接四边形 C+BAD=180° B+D=180° DAE=C八 切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可 即:MNOA且MN过半径OA外端 MN是O的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心以上三个定理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件 MN是切线 MNOA切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:PA、PB是的两条切线 PA=PB PO平分BPA九 圆内正多边形的计算(1)正三角形 在O中 ABC是正三角形,有关计算在RtBOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算在RtOAE中进行,OE :AE:OA=(3)正六边形同理,六边形的有关计算在RtOAB中进行,AB:OB:OA= 十、圆的有关概念 1、三角形的外接圆、外心。 用到:线段的垂直平分线及性质 2、三角形的内切圆、内心。 用到:角的平分线及性质 3、圆的对称性。 十一、圆的有关线的长和面积。 1、圆的周长、弧长 C=2r, l= 2、圆的面积、扇形面积、圆锥的侧面积和全面积 S圆=r2 , S扇形= S圆锥= 3、求面积的方法 直接法由面积公式直接得到 间接法即:割补法(和差法)进行等量代换 十二、侧面展开图:圆柱侧面展开图是 形,它的长是底面的 ,高是这个圆柱的 ;圆锥侧面展开图是 形,它的半径是这个圆锥的 ,它的弧长是这个圆锥的底面的 。十三、正多边形计算的解题思路:正多边形等腰三角形直角三角形。可将正多边形的中心与一边组成等腰三角形,再用解直角三角形的知识进行求解。1下面所给几何体的俯视图是( )A B C D俯视图主视图左视图第2题图2若右图是某个几何体的三视图,则该几何体是( )A长方体B三棱柱C圆柱D圆台3如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是( )A5cmB10cm 第9题图ABCC12cmD13cm4如图,在ABC中,AB = AC,AB = 8,BC = 12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是( )ABCD5半径为r的圆内接正三角形的边长为 .(结果可保留根号)6.下列结论正确的是( )A、长度相等的两条弧是等弧B、相等的圆心角所对的弧相等B(图2)AOC、圆是轴对称图形D、平分弦的直线垂直于弦7、如图2,O的弦AB垂直于直径MN,C为垂足,若OA=5cm,下面四个结论中可能正确的是( ) A、AB=12cm B、OC=6cm C、MN=8cm D、AC=2.5cm8、下列命题正确的个数 ( )三角形的内心一定在三角形的内部,外心在三角形的外部三角形的内心是三角形三边中垂线的交点,所以它到三角形三个顶点的距离相等三角形的内心是三角形三个内角平分线的交点,它到三角形三边的距离相等等边三角形的内心和外心是同一个点A、1个 B、2个 C、3个 D、4个ACDFOEB9(8分)如图,AB是O的直径,点C在AB的延长线上,CD切O于点D,过点D作DFAB于点E,交O于点F,已知OE1cm,DF4cm(1)求O的半径;(2)求切线CD的长10、等腰直角三角形ABC的腰长为5,D是斜边上AB的中点,则以D为圆心、-为半径的圆经过A、B、C;以D为圆心,2.5为半径的圆与直线-相切,当半径为-时,O与AC、BC、AB都相交;当半径为-时,O与AC、BC、AB都相切。11、在O的直径CB的延长线上取一点A,AP切O于P,且APB=300,AB=则CP=-.12、在RtABC中,C=900,AC=3,BC=4,若以C为圆心,R为半径的圆与斜边AB只有一个公共交点,则R的取值范围是-图24A513如图24A5,P为O外一点,PA、PB分别切O于A、B,CD切O于点E,分别交PA、PB于点C、D,若PA=5,则PCD的周长为( )A5 B7 C8 D1014已知在ABC中,AB=AC=13,BC=10,那么ABC的内切圆的半径为( )A B C2 D3图24A915如图24A9,AB、AC与O相切于点B、C,A=50,P为O上异于B、C的一个动点,则BPC的度数为 。16一个圆锥的底面半径为3,高为4,则圆锥的侧面积是 。17如图24A13,AD、BC是O的两条弦,且AD=BC,图24A13求证:AB=CD。18如图24B2,若等边A1B1C1内接于等边ABC的内切圆,则的值为( )图24B2A B C D图24B1419若正三角形、正方形、正六边形的周长相等,它们的面积分别是S1、S2、S3,则下列关系成立的是( )AS1=S2=S3 BS1>S2>S3 CS1<S2<S3 DS2>S3>S120如图24B14,在O中,直径CD与弦AB相交于点E,若BE=3,AE=4,DE=2,则O的半径是 。图24B1521(2005·潍坊)如图24B15,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD、BC于M、N两点,与DC切于点P,则图中阴影部分的面积是 。22如图24B18,在O中,AB是直径,CD是弦,ABCD。图24B18(1)P是优弧CAD上一点(不与C、D重合),求证:CPD=COB;(2)点P在劣弧CD上(不与C、D重合)时,CPD与COB有什么数量关系?请证明你的结论。23已知:ABC内接于O,过点A作直线EF。图24A15 图24A16(1)如图24A15,AB为直径,要使EF为O的切线,还需添加的条件是(只需写出三种情况): ; ; 。(2)如图24A16,AB是非直径的弦,CAE=B,求证:EF是O的切线。24如图,以RtABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE. (1) DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;(2) 若AD、AB的长是方程x210x+24=0的两个根,求直角边BC的长。25如图,在矩形ABCD中,AB3,BC4,P是边AD上一点(除端点外),过三点A,B,P作O (1)指出圆心O的位置; (2)当AP3时,判断CD与O的位置关系;(3)当CD与O相切时,求BC被O截得的弦长26已知,如图,D交y轴于A、B,交x轴于C,过C的直线:y=2x8与y轴交于P.(1) 求证:PC是D的切线;(2)判断在直线PC上是否存在点E,使得SEOC=4SCDO,若存在,求出点E的坐标;若不存在,请说明理由.

    注意事项

    本文(2020浙教版九年级数学上-圆的知识点总结及习题.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开