第六章晶体放大电路课件.ppt
本章要求:,1.理解单管交流放大电路的放大作用和共发射极、共集电极放大电路的性能特点。掌握静态工作点的估算方法和放大电路的微变等 效电路分析法。3.了解放大电路输入、输出电阻和多级放大的概念,了解放大电路的频率特性、互补功率放大电路的 工作原理。4.了解场效应管的电流放大作用、主要参数的意义。5.掌握负反馈和正反馈的判别方法6.掌握负反馈对放大电路动态性能的影响,第6章 基本放大电路,第6章 晶体放大电路基础,1、概述:放大电路(即放大器)是应用最为广泛的一类电子线路,它的功能是:将输入信号不失真地放大。在通信、自动控制、电子测量及广播、电视等方面和电子设备中,放大器是必不可少的组成部分。,放大的概念:,放大的目的是将微弱的变化信号放大成较大的信号。,放大的实质:用小能量的信号通过三极管的电流控制作用,将放大电路中直流电源的能量转化成交流能量输出。,对放大电路的基本要求:1.要有足够的放大倍数(电压、电流、功率)。2.尽可能小的波形失真。另外还有输入电阻、输出电阻、通频带等其它技术指标。,本章主要讨论电压放大电路,同时介绍功率放大电路。,2、放大电路的分类:,1.根据非线性元件的数量分:简单放大电路:由一只晶体管(或FET)组成。且有(基本放大电路)共射极、共基极、共集电极、共源极、共漏极等。多级放大电路:由两只以上晶体管(或FET)组成,也可以有多种其他组合电路形式。,2.根据放大信号不同特征来分:直流放大器:其工作信号(被放大的对象)是缓慢变化的信号。音频放大器:其工作信号(被放大的对象)是语言信号的放大器。视频放大器:其工作信号(被放大的对象)是图像信号。高频放大器:其工作信号(被放大的对象)是高频载波信号或已调制的信号。,3.根据工作信号的强弱分:小信号放大器工作信号幅度很小。大信号放大器工作信号幅度很大,常用作功率放大。,三、在这一章里,我们将以几种基本放大电路为例。介绍放大电路的组成原则、工作原理、性能指标、计算分析方法等;在此基础上再扩展到多级放大电路、差分放大电路、集成运算放大电路、功率放大电路等的工作原理及其频率特性。,6.1 基本放大电路的组成,6.1.1 共发射极基本放大电路组成,共发射极基本电路,6.1 基本放大电路的组成,6.1.2 基本放大电路各元件作用,晶体管T-放大元件,iC=iB。要保证集电结反偏,发射结正偏,使晶体管工作在放大区。,基极电源EB与基极电阻RB-使发射结 处于正偏,并提供大小适当的基极电流。,共发射极基本电路,6.1 基本放大电路的组成,6.1.2 基本放大电路各元件作用,集电极电源EC-为电路提供能量。并保证集电结反偏。,集电极电阻RC-将变化的电流转变为变化的电压。,耦合电容C1、C2-隔离输入、输出与放大电路直流的联系,同时使信号顺利输入、输出。,信号源,负载,共发射极基本电路,6.1 基本放大电路的组成,单电源供电时常用的画法,共发射极基本电路,1.放大倍数,6.1.3 放大电路的主要技术指标,2.输入电阻,3.输出电阻,4.通频带:通常将放大倍数在高频和低频段分别下降为中频段放大倍数的1/时,所包括的频率范围。,6.1.4 共射放大电路的电压放大作用,无输入信号(ui=0)时:,uo=0uBE=UBEuCE=UCE,结论:,(1)无输入信号电压时,三极管各电极都是恒定的 电压和电流:IB、UBE和 IC、UCE。,(IB、UBE)和(IC、UCE)分别对应于输入、输出特性曲线上的一个点,称为静态工作点。,结论:,(2)、加上输入信号电压后,各电极电流和电压的大 小均发生了变化,都在直流量的基础上叠加了 一个交流量,但方向始终不变。,+,集电极电流,直流分量,交流分量,动态分析,静态分析,结论:,(3)若参数选取得当,输出电压可比输入电压大,即电路具有电压放大作用。,(4)输出电压与输入电压在相位上相差180,即共发射极电路具有反相作用。,1.实现放大的条件,(1)晶体管必须工作在放大区。发射结正偏,集 电结反偏。(2)正确设置静态工作点,使晶体管工作于放大 区。(3)输入回路将变化的电压转化成变化的基极电 流。(4)输出回路将变化的集电极电流转化成变化的 集电极电压,经电容耦合只输出交流信号。,6.3.2 放大电路的基本分析方法,三极管的输入特性和输出特性都是非线性的,因此对放大电路进行定量分析时,主要矛盾是如何处理三极管的非线性问题。而要解决这个问题,常用以下两种方法:1.图解法 2.小信号等效电路法(又称微变等效电路法),放大电路的分析方法,放大电路分析,静态分析,动态分析,估算法,图解法,微变等效电路法,图解法,计算机仿真,所谓图解法:就是在承认三极管特性为非线性的前提下,在管子的特性曲线上用作图的方法求解。而小信号等效电路法:(又称微变等效电路法)其实质是在静态工作点附近一个比较小的变化范围内,近似地认为三极管的特性是线性的,由此导出三极管的等效电路以及一系列小信号等效参数,从而将非线性问题转化为线性问题,这样我们就可以利用电路原理中学过的有关线性电路的各种规律来求解三极管放大电路。,另一方面,在放大电路中我们要处理的信号通常是交、直流的混合量,故在计算时可以将交直流分开考虑;所谓对放大电路的分析,就是要确定外电路在晶体管或场效应管各极上产生的电压和电流值。因此有两个工作要做:(1)直流分析确定静态Q点;(2)交流分析计算电路的动态性能指标,如Au、Ri、Ro等。,一、直流通路和交流通路,直流通路和交流通路的划分依据:叠加定理。直流通路:在直流电源作用下,直流电流流经的通路 交流通路:在输入信号作用下,交流信号流经的通路 在分析放大电路时,应遵循“先静态、后动态”的原则,即:求解静态工作点时应利用直流通路。求解交流动态参数时应利用交流通路。,直流量与交流量常必须共存于放大电路中,由于电抗元件存在,使直流量与交流量所流经的通路不同,因此为了研究问题方便,将放大电路分为直流通路与交流通路:直流通路用于分析放大电路的静态工作点;交流通路用于分析放大电路的动态参数。,1.直流通路:,直流通路(实际就是放大电路的偏置电路)当输入信号Ui=0时,电路中只有直流量,我们就把Ui=0时形成的电流通路称为直流通路。直流通路画法原则:(举例)对直流来讲,电容视为开路,电感视为短路。令Ui=0(输入信号为0)耦合电容C1、C2等开路,电感等短路 保留直流电压源Vcc或Ec,例1:,对直流信号(只有+EC),例2:画出下图放大电路的直流通路,直流通路,直流通路用来计算静态工作点Q(IB、IC、UCE),对直流信号电容 C 可看作开路(即将电容断开),断开,断开,直流通路与交流通路,练习:,分析各图所示电路对正弦交流信号有无放大作用。,第一步:画直流通路,判断BJT静态工作点是否在放大区域;,如果未给出具体数值,则即定性判断是否发射结正偏集电结反偏。,如果给出了具体数值,则即定量判断相应的电压和电流是否符合要求。,第二步:画出交流通路,从电路角度分析是否具有放大作用。,练习:(a),第一步:画直流通路;,发射结反偏,不能工作在放大区域。,无放大作用,即使静态时,调整电源使三极管满足放大时的偏置,也无放大作用,因为:,输入的交流信号短路没有加入放大电路中。,练习:(b),如果Rb和Rc满足偏置要求则具有放大作用。,练习:(c),第一步:画直流通路,无放大作用,练习:(d),VCC极性接反,无放大作用,关于临界饱和,1、是饱和状态和放大状态的交界,既可用饱和时的条件又可应用放大时的公式。,2、如果求得实际的电流IB IBS,则工作在放大区域;否则工作在饱和区域。,练习2.2,S接通位置A:,工作在饱和区域。,临界饱和,放大,饱和,IB IBS,IB=IBS,开关处在A,B,C位置,工作在什么状态?并求Ic.,练习2.2,S接通位置B:,工作在放大区域。,临界饱和,放大,饱和,IB IBS,IB=IBS,练习P186 4.2.2,S接通位置C:发射结反偏。,工作在截止区域。,共射极放大电路,放大电路如图所示。已知BJT的=80,Rb=300k,Rc=2k,VCC=+12V,求:,(1)放大电路的Q点。此时BJT工作在哪个区域?,(2)当Rb=100k时,放大电路的Q点。此时BJT工作在哪个区域?(忽略BJT的饱和压降),解:(1),(2)当Rb=100k时,,静态工作点为Q(40A,3.2mA,5.6V),BJT工作在放大区。,其最小值也只能为0,即IC的最大电流为:,,所以BJT工作在饱和区。,VCE不可能为负值,,此时,Q(120uA,6mA,0V),,例题,仍设BJT的=80,电路中VCC=+12V,求:,(3)当Rb=300k时,Rc=5k时放大电路的Q点。此时BJT工作在哪个区域?,解:,(3)当Rb=300k时,Rc=5k时,,所以BJT工作在饱和区。,VCE最小为0,,此时,Q(40uA,2.4mA,0V),接上题,?,思 考 题,放大电路如图所示。当测得BJT的VCE 接近VCC的值时,问管子处于什么工作状态?可能的故障原因有哪些?,截止状态,答:,故障原因可能有:,Rb支路可能开路,IB=0,IC=0,VCE=VCC-IC Rc=VCC。,C1可能短路,VBE=0,IB=0,IC=0,VCE=VCC-IC Rc=VCC。,当实际的基极电流,时,三极管才工作在放大区。,如何判断电路中三极管工作在什么区域?,方法1,放大:发射结正偏,集电结反偏,饱和:发射结正偏,集电结正偏,截止:发射结反偏,集电结反偏,倒置:发射结反偏,集电结正偏,方法2,方法3,静态工作点的位置,2.交流通路:,交流通路:在只考虑交流信号作用时,电路中只有交流量,电路为动态的,此时凡是固定不变的量均为零,即恒定电压源视为短路,恒定电流源视为开路。(举例)交流通路画法原则:令Ui0(加入输入信号)电容C1、C2对交流信号短路 直流电压源自身短路,对交流信号(输入信号ui),对交流信号(有输入信号ui时的交流分量),XC 0,C 可看作短路。忽略电源的内阻,电源的端电压恒定,直流电源对交流可看作短路。,短路,短路,对地短路,交流通路,用来计算电压放大倍数、输入电阻、输出电阻等动态参数。,6.2 放大电路的静态分析,静态:放大电路无信号输入(ui=0)时的工作状态。,分析方法:估算法、图解法。分析对象:各极电压电流的直流分量。所用电路:放大电路的直流通路。,设置Q点的目的:(1)使放大电路的放大信号不失真;(2)使放大电路工作在较佳的工作状态,静态是动态的基础。,静态工作点Q:IB、IC、UCE。,静态分析:确定放大电路的静态值。,6.2.1 用估算法确定静态值,1.直流通路估算 IB,根据电流放大作用,2.由直流通路估算UCE、IC,当UBE UCC时,,由KVL:UCC=IB RB+UBE,由KVL:UCC=IC RC+UCE,所以 UCE=UCC IC RC,例1:用估算法计算静态工作点。,已知:UCC=12V,RC=4k,RB=300k,=37.5。,解:,注意:电路中IB 和 IC 的数量级不同,例2:用估算法计算图示电路的静态工作点。,由例1、例2可知,当电路不同时,计算静态值的公式也不同。,由KVL可得:,由KVL可得:,12.2.2 用图解法确定静态值,用作图的方法确定静态值,步骤:1.用估算法确定IB,优点:能直观地分析和了解静 态值的变化对放大电路 的影响。,2.由输出特性确定IC 和UCC,直流负载线方程,6.2.2 用图解法确定静态值,直流负载线斜率,直流负载线,由IB确定的那条输出特性与直流负载线的交点就是Q点,O,6.3 放大电路的动态分析,动态:放大电路有信号输入(ui 0)时的工作状态。,分析方法:微变等效电路法,图解法。所用电路:放大电路的交流通路。,动态分析:计算电压放大倍数Au、输入电阻ri、输出电阻ro等。,分析对象:各极电压和电流的交流分量。,目的:找出Au、ri、ro与电路参数的关系,为设计 打基础。,6.3.1 微变等效电路法,微变等效电路:把非线性元件晶体管所组成的放大电路等效为一个线性电路。即把非线性的晶体管线性化,等效为一个线性元件。,线性化的条件:晶体管在小信号(微变量)情况下工作。因此,在静态工作点附近小范围内的特性曲线可用直线近似代替。,微变等效电路法:利用放大电路的微变等效电路分析计算放大电路电压放大倍数Au、输入电阻ri、输出电阻ro等。,晶体管的微变等效电路可从晶体管特性曲线求出。,当信号很小时,在静态工作点附近的输入特性在小范围内可近似线性化。,1.晶体管的微变等效电路,UBE,对于小功率三极管:,rbe一般为几百欧到几千欧。,6.3.1 微变等效电路法,(1)输入回路,Q,输入特性,晶体管的输入电阻,晶体管的输入回路(B、E之间)可用rbe等效代替,即由rbe来确定ube和 ib之间的关系。,(2)输出回路,rce愈大,恒流特性愈好因rce阻值很高,一般忽略不计。,晶体管的输出电阻,输出特性,输出特性在线性工作区是一组近似等距的平行直线。,晶体管的电流放大系数,晶体管的输出回路(C、E之间)可用一受控电流源 ic=ib等效代替,即由来确定ic和 ib之间的关系。,一般在20200之间,在手册中常用hfe表示。,O,ib,晶体三极管,微变等效电路,1.晶体管的微变等效电路,晶体管的B、E之间可用rbe等效代替。,晶体管的C、E之间可用一受控电流源ic=ib等效代替。,2.放大电路的微变等效电路,将交流通路中的晶体管用晶体管微变等效电路代替即可得放大电路的微变等效电路。,交流通路,微变等效电路,分析时假设输入为正弦交流,所以等效电路中的电压与电流可用相量表示。,微变等效电路,2.放大电路的微变等效电路,将交流通路中的晶体管用晶体管微变等效电路代替即可得放大电路的微变等效电路。,3.电压放大倍数的计算,当放大电路输出端开路(未接RL)时,,因rbe与IE有关,故放大倍数与静态 IE有关。,负载电阻愈小,放大倍数愈小。,式中的负号表示输出电压的相位与输入相反。,例1:,3.电压放大倍数的计算,例2:,由例1、例2可知,当电路不同时,计算电压放大倍数 Au 的公式也不同。要根据微变等效电路找出 ui与ib的关系、uo与ic 的关系。,4.放大电路输入电阻的计算,放大电路对信号源(或对前级放大电路)来说,是一个负载,可用一个电阻来等效代替。这个电阻是信号源的负载电阻,也就是放大电路的输入电阻。,定义:,输入电阻是对交流信号而言的,是动态电阻。,电路的输入电阻愈小,从信号源取得的电流愈大,增加了信号源的负担。因此一般总是希望得到较大的输入电阻。,例1:,5.放大电路输出电阻的计算,放大电路对负载(或对后级放大电路)来说,是一个信号源,可以将它进行戴维宁等效,等效电源的内阻即为放大电路的输出电阻。,定义:,输出电阻是动态电阻,与负载无关。,输出电阻是表明放大电路带负载能力的参数。电路的输出电阻愈小,负载变化时输出电压的变化愈小,因此一般总是希望得到较小的输出电阻。,例3:,求ro的步骤:1)断开负载RL,3)外加电压,4)求,外加,2)令 或,交流通路,二、动态分析图解法,所以交流负载线比直流负载更陡,当 时,交直流负载重合,动态分析图解法,RL=,由uo和ui的幅值(或峰峰值)之比可得放大电路的电压放大倍数。,动态分析图解法,电压放大倍数将减小。,6.3.2 非线性失真,如果Q设置不合适,晶体管进入截止区或饱和区工作,将造成非线性失真。,若Q设置过高,,动画,晶体管进入饱和区工作,造成饱和失真。,适当减小基极电流可消除失真。,6.3.2 非线性失真,若Q设置过低,,动画,晶体管进入截止区工作,造成截止失真。,适当增加基极电流可消除失真。,如果Q设置合适,信号幅值过大也可产生失真,减小信号幅值可消除失真。,6.4 静态工作点的稳定,合理设置静态工作点是保证放大电路正常工作的先决条件。但是放大电路的静态工作点常因外界条件的变化而发生变动。,前述的固定偏置放大电路,简单、容易调整,但在温度变化、三极管老化、电源电压波动等外部因素的影响下,将引起静态工作点的变动,严重时将使放大电路不能正常工作,其中影响最大的是温度的变化。,6.4.1 温度变化对静态工作点的影响,在固定偏置放大电路中,当温度升高时,UBE、ICBO。,上式表明,当UCC和 RB一定时,IC与 UBE、以及 ICEO 有关,而这三个参数随温度而变化。,温度升高时,IC将增加,使Q点沿负载线上移。,iC,uCE,Q,温度升高时,输出特性曲线上移,固定偏置电路的工作点Q点是不稳定的,为此需要改进偏置电路。当温度升高使 IC 增加时,能够自动减少IB,从而抑制Q点的变化,保持Q点基本稳定。,结论:当温度升高时,IC将增加,使Q点沿负载线上移,容易使晶体管 T进入饱和区造成饱和失真,甚至引起过热烧坏三极管。,O,6.4.2 分压式偏置电路,1.稳定Q点的原理,基极电位基本恒定,不随温度变化。,VB,6.4.2 分压式偏置电路,1.稳定Q点的原理,VB,集电极电流基本恒定,不随温度变化。,从Q点稳定的角度来看似乎I2、VB越大越好。但 I2 越大,RB1、RB2必须取得较小,将增加损耗,降低输入电阻。而VB过高必使VE也增高,在UCC一定时,势必使UCE减小,从而减小放大电路输出电压的动态范围。,在估算时一般选取:I2=(5 10)IB,VB=(5 10)UBE,RB1、RB2的阻值一般为几十千欧。,参数的选择,VE,VB,Q点稳定的过程,VE,VB,VB 固定,RE:温度补偿电阻 对直流:RE越大,稳定Q点效果越好;对交流:RE越大,交流损失越大,为避免交流损失加旁路电容CE。,2.静态工作点的计算,估算法:,VB,3.动态分析,对交流:旁路电容 CE 将RE 短路,RE不起作用,Au,ri,ro与固定偏置电路相同。,如果去掉CE,Au,ri,ro?,旁路电容,去掉CE后的微变等效电路,如果去掉CE,Au,ri,ro?,无旁路电容CE,有旁路电容CE,Au减小,分压式偏置电路,ri 提高,ro不变,对信号源电压的放大倍数?,信号源,考虑信号源内阻RS 时,例1:,在图示放大电路中,已知UCC=12V,RC=6k,RE1=300,RE2=2.7k,RB1=60k,RB2=20k RL=6k,晶体管=50,UBE=0.6V,试求:(1)静态工作点 IB、IC 及 UCE;(2)画出微变等效电路;(3)输入电阻ri、ro及 Au。,解:,(1)由直流通路求静态工作点。,直流通路,(2)由微变等效电路求Au、ri、ro。,微变等效电路,6.6 射极输出器,因对交流信号而言,集电极是输入与输出回路的公共端,所以是共集电极放大电路。因从发射极输出,所以称射极输出器。,求Q点:,6.6.1 静态分析,直流通路,6.6.2 动态分析,1.电压放大倍数,电压放大倍数Au1且输入输出同相,输出电压跟随输入电压,故称电压跟随器。,微变等效电路,2.输入电阻,射极输出器的输入电阻高,对前级有利。ri 与负载有关,3.输出电阻,射极输出器的输出电阻很小,带负载能力强。,共集电极放大电路(射极输出器)的特点:,1.电压放大倍数小于1,约等于1;2.输入电阻高;3.输出电阻低;4.输出与输入同相。,射极输出器的应用,主要利用它具有输入电阻高和输出电阻低的特点。,1.因输入电阻高,它常被用在多级放大电路的第一级,可以提高输入电阻,减轻信号源负担。,2.因输出电阻低,它常被用在多级放大电路的末级,可以降低输出电阻,提高带负载能力。,3.利用 ri 大、ro小以及 Au 1 的特点,也可将射极输出器放在放大电路的两级之间,起到阻抗匹配作用,这一级射极输出器称为缓冲级或中间隔离级。,例1:,.,在图示放大电路中,已知UCC=12V,RE=2k,RB=200k,RL=2k,晶体管=60,UBE=0.6V,信号源内阻RS=100,试求:(1)静态工作点 IB、IE 及 UCE;(2)画出微变等效电路;(3)Au、ri 和 ro。,解:,(1)由直流通路求静态工作点。,直流通路,(2)由微变等效电路求Au、ri、ro。,微变等效电路,6.9 放大电路中的负反馈,1 反馈的基本概念,2 反馈放大电路的基本类型及分析方法,3 负反馈对放大电路性能的影响,D,4 负反馈放大电路应用中的几个问题,1 什么是放大电路中的负反馈,反馈:将放大电路输出端的信号(电压或电流)的 一部分或全部通过某种电路引回到输入端。,6.9 放大电路中的负反馈,通过RE将输出电压反馈到输入,通过RE将输出电流反馈到输入,6.9.1 负反馈与正反馈,反馈:将电子电路(或某个系统)的输出端的信号(电压或电流)的一部分或全部通过某种电路引回到输入端。,6.9 反馈的基本概念,反馈电子电路的方框图,输出信号,输入信号,反馈信号,净输入信号,反馈放大电路的三个环节:,基本放大电路,比较环节,反馈电路,反馈系数,放大倍数,净输入信号,若比较的结果使净输入信号减小,因而输出信号也减小,称为负反馈。,反之若比较的结果使净输入信号增大,因而输出信号也增大,称为正反馈。,反馈类型的判别步骤,3)判别是交流或直流反馈?,2)采用瞬时极性法判别正负反馈,4)是负反馈!判断是何种类型的负反馈?,1)找出反馈网络(一般是电阻、电容)。,6.9.2 负反馈与正反馈的判别方法,1)判别反馈元件(一般是电阻、电容)(1)连接在输入与输出之间的元件。(2)为输入回路与输出回路所共有的元件。,例1:,2)判断是交流反馈还是直流反馈,交、直流分量的信号均可通过 RE,所以RE引入的是交、直流反馈。,如果有发射极旁路电容,RE中仅有直流分量的信号通过,这时RE引入的则是直流反馈。,E,例1:,例1:,3)判断反馈类型,净输入信号:,ui 与 uf 串联,以电压形式比较串联反馈,ui正半周时,uf也是正半周,即两者同相,负反馈,uf 正比于输出电流电流反馈,串联电流负反馈,+uf,+,ie,ube,ube=ui-uf,uf=ie RE,Ube=Ui-Uf,可见 Ube Ui,反馈电压Uf 削弱了净输入电压,ic RC,结论:,反馈过程:,电流负反馈具有稳定输出电流的作用,反馈类型 串联电流负反馈,Ic,Uf,Ube,ib,Ic,uf ic RC,+uf,+,ube,Ube=Ui-Uf,2.负反馈的类型,1)根据反馈所采样的信号不同,可以分为电压反馈 和电流反馈。,电流负反馈具有稳定输出电流、增大输出电阻的作用。,电压负反馈具有稳定输出电压、减小输出电阻的作用。,如果反馈信号取自输出电压,叫电压反馈。如果反馈信号取自输出电流,叫电流反馈。,6.9 放大电路中的负反馈,2)根据反馈信号在输入端与输入信号比较形式的 不同,可以分为串联反馈和并联反馈。,反馈信号与输入信号串联,即反馈信号与输入信号以电压形式作比较,称为串联反馈。,反馈信号与输入信号并联,即反馈信号与输入信号以电流形式作比较,称为并联反馈。,串联反馈使电路的输入电阻增大,并联反馈使电路的输入电阻减小。,负反馈,交流反馈,直流反馈,电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈,负反馈的类型,稳定静态工作点,4.利用瞬时极性法判断负反馈,+,+,+,(1)设接“地”参考点的电位为零,在某点对“地”电压(即电位)的正半周,该点交流电位的瞬时极性为正;在负半周则为负。,(2)设基极瞬时极性为正,根据集电极瞬时极性与基极相反、发射极(接有发射极电阻而无旁路电容时)瞬时极性与基极相同的原则,标出相关各点的瞬时极性。,4.利用瞬时极性法判断负反馈,+,+,(3)若反馈信号与输入信号加在同一电极上,,(4)若反馈信号与输入信号加在两个电极上,,两者极性相反为负反馈;,极性相同为正反馈。,两者极性相同为负反馈;,极性相反为正反馈。,反馈到基极为并联反馈,反馈到发射极为串联反馈,判断串、并联反馈,ib=ii if,ube=ui uf,共发射极电路,判断电压、电流反馈,从集电极引出为电压反馈,从发射极引出为电流反馈,判断反馈类型的口诀:,共发射极电路,集出为压,射出为流,基入为并,射入为串。,反馈信号与输入信号在不同节点为串联反馈,在同一个节点为并联反馈。,反馈取自输出端或输出分压端为电压反馈,反馈取自非输出端为电流反馈。,规 律:,例3:判断图示电路中的负反馈类型。,解:RE2对交流不起作用,引入的是直流反馈;,RE1对本级引入串联电流负反馈。,RE1、RF对交、直流均起作用,所以引入的是交、直流反馈。,例3:判断图示电路中的负反馈类型。,解:,RE1、RF引入越级串联电压负反馈。,+,+,T2集电极的 反馈到T1的发射极,提高了E1的交流电位,使Ube1减小,故为负反馈;反馈从T2的集电极引出,是电压反馈;反馈电压引入到T1的发射极,是串联反馈。,例4:如果RF不接在T2 的集电极,而是接C2与RL 之间,两者有何不同?,解:因电容C2的隔直流作用,这时RE1、RF仅 引入交流电压串联负反馈。,例5:如果RF的另一端不接在T1 的发射极,而是接在它的基极,两者有何不同,是否会变成正反馈?,解:T2集电极的 反馈到T1的基极,提高了B1的交流电位,使Ube1增大,故为正反馈;这时RE1、RF引入越级电压并联正反馈。,+,+,RF2(R1、R2):直流反馈,(稳定静态工作点),RF、CF:交流电压并联负反馈,+UCC,(a),RE1,+,R1,RF1,RF2,C2,RC2,RC1,CE2,RE2,R2,+,C,+,RF1、RE1:交直流电压串联负反馈,+,+,+,例6:,RF,RE2:直流反馈,+,+,电流并联负反馈,正反馈,两个2k电阻构成交直流反馈,两个470k,6.9.2 负反馈对放大电路性能的影响,反馈放大电路的基本方程,反馈系数,净输入信号,开环放大倍数,闭环放大倍数,1.降低放大倍数,负反馈使放大倍数下降。,则有:,(参见教材例题),|1+AF|称为反馈深度,其值愈大,负反馈作用愈强,Af也就愈小。,射极输出器、不带旁路电容的共射放大电路的电压放大倍数较低就是因为电路中引入了负反馈。,2.提高放大倍数的稳定性,引入负反馈使放大倍数的稳定性提高。,放大倍数下降至1/(1+|AF|)倍,其稳定性提高1+|AF|倍。,若|AF|1,称为深度负反馈,此时:,在深度负反馈的情况下,闭环放大倍数仅与反馈电路的参数有关。,例:|A|=300,|F|=0.01。,3.改善波形失真,加反馈前,加反馈后,大,略小,略大,略小,略大,负反馈是利用失真的波形来改善波形的失真,因此只能减小失真,而不能完全消除失真。,小,接近正弦波,正弦波,4.对输入电阻的影响,1)串联负反馈,无负反馈时:,有负反馈时:,使电路的输入电阻提高,无负反馈时:,有负反馈时:,2)并联负反馈,使电路的输入电阻降低,电压负反馈具有稳定输出电压的作用,即有恒压输出特性,故输出电阻降低。,电流负反馈具有稳定输出电流的作用,即有恒流输出特性,故输出电阻提高。,1)电压负反馈使电路的输出电阻降低,2)电流负反馈使电路的输出电阻提高,6.对输出电阻的影响,