欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    选修3_物质结构与性质_全册教学案.doc

    • 资源ID:4090382       资源大小:1.81MB        全文页数:32页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    选修3_物质结构与性质_全册教学案.doc

    物质结构与性质全部教学案第一节 原子结构:2、能层与能级由必修的知识,我们已经知道多电子原子的核外电子的能量是不同的,由内而外可以分为: 第一、二、三、四、五、六、七能层符号表示 K、 L、 M、 N、 O、 P、 Q 能量由低到高例如:钠原子有11个电子,分布在三个不同的能层上,第一层2个电子,第二层8个电子,第三层1个电子。由于原子中的电子是处在原子核的引力场中,电子总是尽可能先从内层排起,当一层充满后再填充下一层。理论研究证明,原子核外每一层所能容纳的最多电子数如下:能 层 一 二 三 四 五 六 七符 号 K L M N O P Q最多电子数 2 8 18 32 50即每层所容纳的最多电子数是:2n2(n:能层的序数)但是同一个能层的电子,能量也可能不同,还可以把它们分成能级(S、P、d、F),就好比能层是楼层,能级是楼梯的阶级。各能层上的能级是不一样的。能级的符号和所能容纳的最多电子数如下:能 层 K L M N O 能 级 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 最多电子数 2 2 6 2 6 10 2 6 10 14 各能层电子数 2 8 18 32 50 (1) 每个能层中,能级符号的顺序是ns、np、nd、nf(2) 任一能层,能级数=能层序数(3) s、p、d、f可容纳的电子数依次是1、3、5、7的两倍3、构造原理 根据构造原理,只要我们知道原子序数,就可以写出几乎所有元素原子的电子排布。即电子所排的能级顺序:1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s元素原子的电子排布:(136号)氢 H 1s1钠 Na 1s22s22p63s1钾 K 1s22s22p63s23p64s1 【Ar】4s1有少数元素的基态原子的电子排布对于构造原理有一个电子的偏差,如:铬 24Cr Ar3d54s1铜 29Cu Ar3d104s1课堂练习1、写出17Cl(氯)、21Sc(钪)、35Br(溴)的电子排布氯:1s22s22p63s23p5钪:1s22s22p63s23p63d14s2溴:1s22s22p63s23p63d104s24p5根据构造原理只要我们知道原子序数,就可以写出元素原子的电子排布,这样的电子排布是基态原子的。2、 写出136号元素的核外电子排布式。3、写出136号元素的简化核外电子排布式。总结并记住书写方法。4、画出下列原子的结构示意图:Be、N、Na、Ne、Mg 回答下列问题: 在这些元素的原子中,最外层电子数大于次外层电子数的有 ,最外层电子数与次外层电子数相等的有 ,最外层电子数与电子层数相等的有 ;L层电子数达到最多的有 ,K层与M层电子数相等的有 。5、下列符号代表一些能层或能级的能量,请将它们按能量由低到高的顺序排列: (1)EK EN EL EM ,(2)E3S E2S E4S E1S ,(3)E3S E3d E2P E4f 。6、A元素原子的M电子层比次外层少2个电子。B元素原子核外L层电子数比最外层多7个电子。  (1)A元素的元素符号是 ,B元素的原子结构示意图为_;(2)A、B两元素形成化合物的化学式及名称分别是_ _ 课前练习1、理论研究证明,在多电子原子中,电子的排布分成不同的能层,同一能层的电子,还可以分成不同的能级。能层和能级的符号及所能容纳的最多电子数如下: (1)根据 的不同,原子核外电子可以分成不同的能层,每个能层上所能排布的最多电子数为 ,除K层外,其他能层作最外层时,最多只能有 电子。 (2)从上表中可以发现许多的规律,如s能级上只能容纳2个电子,每个能层上的能级数与 相等。请再写出一个规律 。S的原子轨道是球形的,能层序数越大,原子轨道的半径越大。 P的原子轨道是纺锤形的,每个P能级有3个轨道,它们互相垂直,分别以Px、Py、Pz为符号。P原子轨道的平均半径也随能层序数增大而增大。 s电子的原子轨道都是球形的(原子核位于球心),能层序数,2越大,原子轨道的半径越大。这是由于1s,2s,3s电子的能量依次增高,电子在离核更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。这是不难理解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s电子比1s电子能量高,克服原子核的吸引在离核更远的空间出现的概率就比1s大,因而2s电子云必然比1s电子云更扩散。(2) 重点难点泡利原理和洪特规则量子力学告诉我们:ns能级各有一个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道.而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“”来表示。一个原子轨道里最多只能容纳2个电子,而且自旋方向相反,这个原理成为泡利原理。推理各电子层的轨道数和容纳的电子数。当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则是洪特规则。练习写出5、6、7、8、9号元素核外电子排布轨道式。并记住各主族元素最外层电子排布轨道式的特点:(成对电子对的数目、未成对电子数和它占据的轨道。思考下列表示的是第二周期中一些原子的核外电子排布,请说出每种符号的意义及从中获得的一些信息。思考写出24号、29号元素的电子排布式,价电子排布轨道式,阅读周期表,比较有什么不同,为什么?从元素周期表中查出铜、银、金的外围电子层排布。它们是否符合构造原理? 2电子排布式可以简化,如可以把钠的电子排布式写成Ne3S1。试问:上式方括号里的符号的意义是什么?你能仿照钠原子的简化电子排布式写出第8号元素氧、第14号元素硅和第26号元素铁的简化电子排布式吗?洪特规则的特例:对于同一个能级,当电子排布为全充满、半充满或全空时,是比较稳定的。课堂练习1、用轨道表示式表示下列原子的价电子排布。(1)N (2)Cl (3)O (4)Mg 2、以下列出的是一些原子的2p能级和3d能级中电子排布的情况。试判断,哪些违反了泡利不相容原理,哪些违反了洪特规则。(1) (2) (3) (4) (5) (6) 违反泡利不相容原理的有 ,违反洪特规则的有 。3、下列原子的外围电子排布中,那一种状态的能量较低?试说明理由。(1)氮原子:A B 2s 2p 2s 2p ;(2)钠原子:A3s1 B3p1 ;(3)铬原子:A3d54s1 B3d44s2 。原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。处于最低能量的原子叫做基态原子。当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。电子从较高能量的激发态跃迁到较低能量的激发态乃至基态时,将释放能量。光(辐射)是电子释放能量的重要形式之一。不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。许多元素是通过原子光谱发现的。在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。课堂练习1、同一原子的基态和激发态相比较 ( ) A、基态时的能量比激发态时高 B、基态时比较稳定C、基态时的能量比激发态时低 D、激发态时比较稳定2、生活中的下列现象与原子核外电子发生跃迁有关的是( ) A、钢铁长期使用后生锈 B、节日里燃放的焰火C、金属导线可以导电 D、卫生丸久置后消失3、比较多电子原子中电子能量大小的依据是( ) A元素原子的核电荷数 B原子核外电子的多少 C电子离原子核的远近 D原子核外电子的大小4、当氢原子中的电子从2p能级,向其他低能量能级跃迁时( ) A. 产生的光谱为吸收光谱 B. 产生的光谱为发射光谱C. 产生的光谱线的条数可能是2 条 D. 电子的势能将升高.1、周期系:随着元素原子的核电荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,如此循环往复这就是元素周期系中的一个个周期。例如,第11号元素钠到第18号元素氩的最外层电子排布重复了第3号元素锂到第10号元素氖的最外层电子排布从1个电子到8个电子;再往后,尽管情形变得复杂一些,但每个周期的第1个元素的原子最外电子层总是1个电子,最后一个元素的原子最外电子层总是8个电子。可见,元素周期系的形成是由于元素的原子核外屯子的排布发生周期性的重复。在周期表中,把能层数相同的元素,按原子序数递增的顺序从左到右排成横行,称之为周期,有7个;在把不同横行中最外层电子数相同的元素,按能层数递增的顺序由上而下排成纵行,称之为族,共有18个纵行,16 个族。16个族又可分为主族、副族、0族。总结元素在周期表中的位置由原子结构决定:原子核外电子层数决定元素所在的周期,原子的价电子总数决定元素所在的族。每个纵列的价电子层的电子总数是否相等?按电子排布,可把周期表里的元素划分成5个区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。s区、d区和p区分别有几个纵列?为什么s区、d区和ds区的元素都是金属?基础要点分析图1-16s区p 区d 区ds 区f 区分区原则纵列数是否都是金属 区全是金属元素,非金属元素主要集中 区。主族主要含 区,副族主要含 区,过渡元素主要含 区。归纳S区元素价电子特征排布为S12,价电子数等于族序数。区元素价电子排布特征为(-1)d110ns12;价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns12,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np16;价电子总数等于主族序数。原子结构与元素在周期表中的位置是有一定的关系的。(1) 原子核外电子总数决定所在周期数周期数=最大能层数(钯除外)46Pd Kr4d10,最大能层数是4,但是在第五周期。(2) 外围电子总数决定排在哪一族如:29Cu 3d104s1 10+1=11尾数是1所以,是IB。 (1)原子半径元素周期表中同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?归纳总结原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是核电荷数。显然电子的能层数越大,电子间的负电排斥将使原子半径增大,所以同主族元素随着原子序数的增加,电子层数逐渐增多,原子半径逐渐增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,所以同周期元素,从左往右,原子半径逐渐减小。(2)电离能:1、第一电离能I1; 态电 性基态原子失去 个电子,转化为气态基态正离子所需要的 叫做第一电离能。第一电离能越大,金属活动性越 。同一元素的第二电离能 第一电离能。2、如何理解第二电离能I2、第三电离能I3 、I4、I5 ?分析下表:科学探究1、原子的第一电离能有什么变化规律呢?碱金属元素的第一电离能有什么变化规律呢?为什么Be的第一电离能大于B,N的第一电离能大于O,Mg的第一电离能大于Al,Zn的第一电离能大于Ga?第一电离能的大小与元素的金属性和非金属性有什么关系?碱金属的电离能与金属活泼性有什么关系?2、阅读分析表格数据:NaMgAl各级电离能(KJ/mol)49673857845621415181769127733274595431054011575133531363014830166101799518376201142170323293为什么原子的逐级电离能越来越大?这些数据与钠、镁、铝的化合价有什么关系?数据的突跃变化说明了什么? 1、递变规律周一周期同一族第一电离能从左往右,第一电离能呈增大的趋势从上到下,第一电离能呈增大趋势。 2、第一电离能越小,越易失电子,金属的活泼性就越强。因此碱金属元素的第一电离能越小,金属的活泼性就越强。 3气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能(用I1表示),从一价气态基态正离子中再失去一个电子所需消耗的能量叫做第二电离能(用I2表示),依次类推,可得到I3、I4、I5同一种元素的逐级电离能的大小关系:I1<I2<I3<I4<I5即一个原子的逐级电离能是逐渐增大的。这是因为随着电子的逐个失去,阳离子所带的正电荷数越来越大,再要失去一个电子需克服的电性引力也越来越大,消耗的能量也越来越多。4、Be有价电子排布为2s2,是全充满结构,比较稳定,而B的价电子排布为2s22p1,、比Be不稳定,因此失去第一个电子B比Be容易,第一电离能小。镁的第一电离能比铝的大,磷的第一电离能比硫的大,为什么呢? Mg:1s22s22p63s2 P:1s22s22p63s23p3那是因为镁原子、磷原子最外层能级中,电子处于半满或全满状态,相对比较稳定,失电子较难。如此相同观点可以解释N的第一电离能大于O,Mg的第一电离能大于Al,Zn的第一电离能大于Ga。5、Na的I1,比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以A1容易失去三个电子形成+3价离子。而电离能的突跃变化,说明核外电子是分能层排布的。1、某元素的电离能(电子伏特)如下:I1I2I3I4I5I6I714.529.647.477.597.9551.9666.8此元素位于元素周期表的族数是A. IA B. A C. A D、A E、A F、A G、 A2、某元素的全部电离能(电子伏特)如下:I1I2I3I4I5I6I7I813.635.154.977.4113.9138.1739.1871.1回答下列各问:(1)由I1到I8电离能值是怎样变化的?_。为什么?_ (2)I1为什么最小?_ (3) I7和I8为什么是有很大的数值_(4)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _(5)I1到I6中,相邻的电离能间为什么差值比较小?_(6)I4和I5间,电离能为什么有一个较大的差值_(7)此元素原子的电子层有 _层。最外层电子构型为 _,电子轨道式为_,此元素的周期位置为_ 周期_族。2、讨论氢的周期位置。为什么放在IA的上方?还可以放在什么位置,为什么?答:氢原子核外只有一个电子(1s1),既可以失去这一个电子变成+1价,又可以获得一个能。电子变成一l价,与稀有气体He的核外电子排布相同。根据H的电子排布和化合价不难理解H在周期表中的位置既可以放在IA,又可以放在A。3、概念辩析:(1) 每一周期元素都是从碱金属开始,以稀有气体结束(2) f区都是副族元素,s区和p区的都是主族元素(3) 铝的第一电离能大于K的第一电离能(4) B电负性和Si相近(5) 已知在200C 1mol Na失去1 mol电子需吸收650kJ能量,则其第一电离能为650KJ/mol(6) Ge的电负性为1.8,则其是典型的非金属(7) 气态O原子的电子排布为: ,测得电离出1 mol电子的能量约为1300KJ,则其第一电离能约为1300KJ/mol(8) 半径:K+>Cl-(9) 酸性 HClO>H2SO4 ,碱性:NaOH > Mg(OH)2(10) 第一周期有2*12=2,第二周期有2*22=8,则第五周期有2*52=50种元素元素的最高正化合价=其最外层电子数=族序数4、元素的电离能与原子的结构及元素的性质均有着密切的联系,根据下列材料回答问题。气态原子失去1个电子,形成1价气态离子所需的最低能量称为该元素的第一电离能,+l价气态离子失去1个电子,形成+2价气态离子所需要的最低能量称为该元素的第二电离能,用I2表示,以此类推。下表是钠和镁的第一、二、三电离能(KJ·mol1)。元素I1I2I3Na4964 5626 912Mg7381 4517 733(1)分析表中数据,请你说明元素的电离能和原子结构的关系是: 元素的电离能和元素性质之间的关系是: (2)分析表中数据,结合你已有的知识归纳与电离能有关的一些规律。 (3)请试着解释:为什么钠易形成Na,而不易形成Na2+?(3)电负性:1、什么是电负性?电负性的大小体现了什么性质?阅读教材p20页表同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧的非金属性与氯的非金属性哪个强?电负性的周期性变化示例 1、金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。电负性的大小可以作为判断元素金属性和非金属性强弱的尺度。金属的电负性一般小于1.8,非金属的电负性一般大于1.8,而位于非金属三角区边界的“类金属”的电负性则在1.8左右,他们既有金属性又有非金属性。 2、同周期元素从左往右,电负性逐渐增大,表明金属性逐渐减弱,非金属性逐渐增强。同主族元素从上往下,电负性逐渐减小,表明元素的金属性逐渐减弱,非金属性逐渐增强。1. 在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”2. 对角线规则 NaCl、HCl的形成过程 设问前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠?例:H2的形成讲解、小结板书1 键:(以“头碰头”重叠形式)a 特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键的图形不变,轴对称图形。b 种类:S-S键 S-P键 P-P键过渡P电子和P电子除能形成键外,还能形成键板书2 键讲解 a.特征:每个键的电子云有两块组成,分别位于有两原子核构成平面的两侧,如果以它们之间包含原子核的平面镜面,它们互为镜像,这种特征称为镜像对称。3 键和键比较 重叠方式 键:头碰头 键:肩并肩键比键的强度较大 成键电子:键 S-S S-P P-P 键 P-P 键成单键键成双键、叁键共价键的特征饱和性、方向性科学探究 讲解小结 生归纳本节重点,老师小结补充练习1下列关于化学键的说法不正确的是( ) A化学键是一种作用力 B化学键可以是原子间作用力,也可以是离子间作用力 C化学键存在于分子内部 D化学键存在于分子之间2对键的认识不正确的是( ) A键不属于共价键,是另一种化学键 BS-S键与S-P键的对称性相同 C分子中含有共价键,则至少含有一个键 D含有键的化合物与只含键的化合物的化学性质不同3下列物质中,属于共价化合物的是( ) AI2 BBaCl2 CH2SO4 DNaOH4下列化合物中,属于离子化合物的是( ) AKNO3 BBeCl CKO2 DH2O25写出下列物质的电子式。H2、N2、HCl、H2O用电子式表示下列化合物的形成过程HCl、NaBr、MgF2、Na2S、CO2答案1D 2略略第二章 分子结构与性质第一节 共价键第二课时教学目标: 认识键能、键长、键角等键参数的概念 能用键参数键能、键长、键角说明简单分子的某些性质 知道等电子原理,结合实例说明“等电子原理的应用”教学难点、重点:键参数的概念,等电子原理教学过程:创设问题情境与在常温下很难反应,必须在高温下才能发生反应,而与在冷暗处就能发生化学反应,为什么?学生讨论小结引入键能的定义板书二、键参数键能概念:气态基态原子形成mol化学键所释放出的最低能量。单位:kmol生阅读书页,表回答:键能大小与键的强度的关系?(键能越大,化学键越稳定,越不易断裂)键能化学反应的能量变化的关系?(键能越大,形成化学键放出的能量越大) 键能越大,形成化学键放出的能量越大,化学键越稳定。过渡键长概念:形成共价键的两原子间的核间距单位:pm(pmm)键长越短,共价键越牢固,形成的物质越稳定设问多原子分子的形状如何?就必须要了解多原子分子中两共价键之间的夹角。键角:多原子分子中的两个共价键之间的夹角。例如:结构为,键角为°,为直线形分子。键角°形键角°正四面体小结键能、键长、键角是共价键的三个参数键能、键长决定了共价键的稳定性;键长、键角决定了分子的空间构型。板书三、等电子原理等电子体:原子数相同,价电子数也相同的微粒。如:和,和等电子体性质相似阅读课本表小结师与生共同总结本节课内容。补充练习下列分子中,两核间距最大,键能最小的是()rl下列说法中,错误的是()键长越长,化学键越牢固成键原子间原子轨道重叠越多,共价键越牢固对双原子分子来讲,键能越大,含有该键的分子越稳定原子间通过共用电子对所形成的化学键叫共价键能够用键能解释的是()氮气的化学性质比氧气稳定常温常压下,溴呈液体,碘为固体稀有气体一般很难发生化学反应硝酸易挥发,硫酸难挥发与互为等电子体的是()根据等电子原理,下列分子或离子与有相似结构的是()ll由表可知的键能为kmol它所表示的意义是如果要使mol分解为mol原子,你认为是吸收能量还是放出能量?能量数值当两个原子形成共价键时,原子轨道重叠的程度越大,共价键的键能,两原子核间的平均距离键长7根据课本中有关键能的数据,计算下列反应中的能量变化: (1)N2(g)+3H2(g)=2NH3(g);H= (2)2H2(g)+O2(g)=2H2O(g);H= 答案每mol气态原子形成mol释放出k能量吸收能量k越大越短7-90.8KJ/mol -481.9 KJ/mol第二节 分子的立体结构第一课时教学目标1、 认识共价分子的多样性和复杂性;2、 初步认识价层电子对互斥模型;3、 能用VSEPR模型预测简单分子或离子的立体结构;4、 培养学生严谨认真的科学态度和空间想象能力。重点难点分子的立体结构;利用价层电子对互斥模型预测分子的立体结构教学过程创设问题情境:1、阅读课本P37-40内容;2、展示CO2、H2O、NH3、CH2O、CH4分子的球辊模型(或比例模型);3、提出问题:什么是分子的空间结构? 同样三原子分子CO2和H2O,四原子分子NH3和CH2O,为什么它们的空间结构不同?讨论交流1、写出CO2、H2O、NH3、CH2O、CH4的电子式和结构式;2、讨论H、C、N、O原子分别可以形成几个共价键;3、根据电子式、结构式描述CO2、H2O、NH3、CH2O、CH4的分子结构。模型探究由CO2、H2O、NH3、CH2O、CH4的球辊模型,对照其电子式云哟内分类对比的方法,分析结构不同的原因。引导交流引导学生得出由于中心原子的孤对电子占有一定的空间,对其他成键电子对存在排斥力,影响其分子的空间结构。引出价层电子对互斥模型(VSEPR models)讲解分析 价层电子对互斥模型 把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO2、CH2O、CH4等分子中的C原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: ABn立体结构范例n=2直线型CO2n=3平面三角形CH2On=4正四面体型CH4 另一类是中心原子上有孤对电子(未用于形成共价键的电子对)的分子。如H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H2O分子呈V型,NH3分子呈三角锥型。(如图)课本P40。应用反馈 应用VSEPR理论判断下表中分子或离子的构型。进一步认识多原子分子的立体结构。化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型H2S22V形NH2-22V形BF303正三角形CHCl304四面体SiF404正四面体补充练习:1、下列物质中,分子的立体结构与水分子相似的是 ( )A、CO2 B、H2S C、PCl3 D、SiCl42、下列分子的立体结构,其中属于直线型分子的是 ( )A、 H2O B、CO2 C、C2H2 D、P43、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?(1) 直线形 (2) 平面三角形 (3) 三角锥形 (4) 正四面体 4、下列分子中,各原子均处于同一平面上的是 ( )A、NH3 B、CCl4 C、H2O D、CH2O5、下列分子的结构中,原子的最外层电子不都满足8电子稳定结构的是( )A、CO2 B、PCl3 C、CCl4 D、NO26、下列分子或离子的中心原子,带有一对孤对电子的是 ( )A、XeO4 B、BeCl2 C、CH4 D、PCl37、为了解释和预测分子的空间构型,科学家在归纳了许多已知的分子空间构型的基础上,提出了一种十分简单的理论模型价层电子对互斥模型。这种模型把分子分成两类:一类是 ;另一类是 。BF3和NF3都是四个原子的分子,BF3的中心原子是 ,NF3的中心原子是 ;BF3分子的立体构型是平面三角形,而NF3分子的立体构型是三角锥形的原因是 。8、用价层电子对互斥模型推测下列分子或离子的空间构型。BeCl2 ;SCl2 ;SO32- ;SF6 参考答案:1、D 2、BC 3、(1)CO2、CS2、HCN 键角180°(2)BF3、BCl3、SO3、CH2O键角60°(3)NH3、PCl3键角107.3°(4)CH4、CCl4键角109°284、CD 5、D 6、D 7、中心原子上的价电子都用于形成共价键 中心原子上有孤对电子 B N BF3分子中B原子的3个价电子都与F原子形成共价键,而NF3分子中N原子的3个价电子与F原子形成共价键,还有一对为成键的电子对,占据了N原子周围的空间,参与相互排斥,形成三角锥形8、直线形 V形 三角锥 正八面体第二章 分子结构与性质第二节 分子的立体结构第2课时教学目标1 认识杂化轨道理论的要点2 进一步了解有机化合物中碳的成键特征3 能根据杂化轨道理论判断简单分子或离子的构型 4采用图表、比较、讨论、归纳、综合的方法进行教学 5培养学生分析、归纳、综合的能力和空间想象能力教学重点 杂化轨道理论的要点教学难点 分子的立体结构,杂化轨道理论展示甲烷的分子模型创设问题情景 碳的价电子构型是什么样的?甲烷的分子模型表明是空间正四面体,分子中的CH键是等同的,键角是109°28。说明什么?结论 碳原子具有四个完

    注意事项

    本文(选修3_物质结构与性质_全册教学案.doc)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开