初中趣味数学题.doc
华师中山附中初中趣味数学竞赛试题(每小题15分,共120分)班级: 姓名: 得分: 1. 今有A、B、C、D四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:A 2 分;B 3 分;C 8 分;D10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥? 解:AB过,B回,CD过,A回,再AB过,3+3+10+2+3=21分钟2. 125 × 4 × 3 = 2000 这个式子显然不等,可是如果算式中巧妙地插入两个数字“7”,这个等式便可以成立,你知道这两个7应该插在哪吗? 解:1725× 4 × 3 =207003. 春夏 × 秋冬 =夏秋春冬, 春冬 × 秋夏 = 春夏秋冬, 式中 春、夏、秋、冬 各代表四个不同的数字,你能指出它们各代表什么数字吗? 解:春夏×秋冬=夏秋春冬,春冬×秋夏=春夏秋冬 秋夏<100, 春冬×100=春冬00>春夏秋冬 冬夏 且积千位春 春夏 当 夏1时,根据九九表和 冬夏知:冬=5,夏=3 若 春6, 由春3×秋53秋春54000 可知 秋7. 春5×秋3春000 无解 若 春6 春5 且春夏3 所以 春4 45×秋343秋5 无解 所以 夏1 因为 春冬×秋1春1秋冬, 所以秋>5 春1 ×秋冬=1秋春冬, 春3 当春=3时,秋=6,3冬×61=316冬 无解. 因为 春>夏,且<3 所以 春=2 2冬×秋1=21秋冬, 21×秋冬=1秋2冬; 秋=9时无解, 秋=8时,冬=7 4. 一个破车要走两英哩的路,上山及下山各一英哩,上山时平均速度每小时15英哩问当它下山走第二个英哩的路时要多快才能达到平均速度为每小时30英哩?是45英哩吗?你可要考虑清楚了呦! 解:无论如何破车的平均速度也不可能达到30英里/小时。因为当平均速度为30英里/小时时,破车上、下山的总时间应为1/15小时。而破车上山就用了1/15小时。所以说破车的平均速度是达不到30英里/小时的。5. 王老太上集市上去卖鸡蛋,第一个人买走蓝子里鸡蛋的一半又一个,第二个人买走剩下鸡蛋的一半又一个,这时蓝子里还剩一个鸡蛋,请问王老太共卖出多少个鸡蛋? 解:从后往前推,第二个人买走剩下鸡蛋的一半又一个后还剩下一个鸡蛋,说明第二个人拿走了2个鸡蛋,也就是说第一个人拿走鸡蛋后还剩下3个鸡蛋,而第一个人拿走总数的一半多一个,说明原来一共有7个鸡蛋。王老太共卖出了9个鸡蛋。6. 试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有多少人参加了这次考试? 解:第一道题有三个人分别选了1、2、3 第二道题他们三个人选了同一个答案(就是1吧,因为所有答案条件相同无所谓的),另外两个人选了2、3 第三道题他们五个人选了1,其他两个人选了2、3 第四题他们7个选1,另两个2、3 第五题他们9个选1,另两个2、3 第六题他们11个选1,另两个2、3 一共13人。只有这种情况才能保证随便三张卷子都有1题答案互不相同,这是抽屉定理中的穷举法。.7牛顿的名著一般算术中,还编有一道很有名的题目,即牛在牧场上吃草的题目,以后人们就把这种应用题叫做牛顿问题。 “有一片牧场的草,如果放牧27头牛,则6个星期可以把草吃光;如果放牧23头牛,则9个星期可以把草吃光;如果放牧21头牛,问几个星期可以把草吃光?”解:设每头牛每星期的吃草量为1。27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15。牧场上原有的草量是162-15×6=72,或207-15×9= 72。前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。也就是说,放牧21头牛,12个星期可以把牧场上的草吃光。8著名物理学家爱因斯坦编的问题:在你面前有一条长长的阶梯。如果你每步跨2阶,那么最后剩下1阶;如果你每步跨3阶,那么最后剩2阶;如果你每步跨5阶,那么最后剩4阶;如果你每步跨6阶,那么最后剩5阶;只有当你每步跨7阶时,最后才正好走完,一阶也不剩。请你算一算,这条阶梯到底有多少阶?解:分析能力较强的同学可以看出,所求的阶梯数应比2、3、5、6的公倍数(即30的倍数)小1,并且是7的倍数。因此只需从29、59、89、119、中找7的倍数就可以了。很快可以得到答案为119阶。9.在中国古典神话小说西游记里,说到唐僧和他的徒弟孙悟空、猪八戒、沙和尚去西天取经,在平顶山莲花洞消灭了想吃唐僧肉的妖怪金角大王和银角大王。然后师徒们继续赶路,又遇上一座巍峨险峻的大山。一面赶路,一面观景,不觉天色已晚。故事发展到这里,小说中写道:师徒们玩着山景,信步行时,早不觉红轮西坠。正是:十里长亭无客走,九重天上观星辰。八河船只皆收港,七千州县尽关门。六宫五府回官宰,四海三江罢钓纶。两座楼头钟鼓响,一轮明月满乾坤。这首诗从十、九、八、七,说到六、五、四、三、两、一,星月点缀夜色,收工了,下班了,关门了,路上没人了,取经赶路的也该找个地方休息了。为了取经,跋山涉水已经苦不堪言,降妖伏魔更是险象环生,害得猪八戒想回家,唐僧心里直打鼓。幸好有孙悟空不断给一行人鼓劲,看看沿途深山老林幽静风光,放松放松。小说里这首写景诗,也正是在紧张情节中夹进一点轻松花絮,稍稍缓一口气。诗中嵌进全部十个数字,而且从大往小,倒过来数,成为别具一格的“倒数诗”,更增加了趣味。西游记是明代吴承恩著的,问世已有400多年。按照我们现在数学里的习惯,用阿拉伯数字把诗中的各个数写出来,顺次排成一串,成为10 9 8 7 6 5 4 3 2 1现在做一个数学小游戏:用上面写出的十个数,不打乱顺序,添加适当的数学符号,组成十个算式,使计算结果分别等于10、9、8、7、6、5、4、3、2、1。要组成其中任意一个算式,是很容易的。要组成全套十个,就要动动脑筋。如果再使组成十个算式的手法有变化,就更有趣了。可以组成很多满足条件的算式,下面是其中的一组。10+9-8-7+6+5-4-3+2×1=10;(10+98+76)×5÷4÷(3+2)+1=9;(10+9+8-7)×6÷5÷4+3-2+1=8;(109-87)÷(6+5)+4+3-2×1=7;(10+9+8-7-6)×5-43-21=6;(10+9+8+7+6)÷5-4÷(3-2)+1=5;10×9-87+65-43-21=4;(109-8+7)÷6-54÷3+2+1=3;(109+87-6)÷5-4-32×1=2;(10×9-87)÷(6×54-321)=1。 1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 19031957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。 冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道 2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。 如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候? 答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑 3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。 逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。 风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。 4、 孙子算经是唐初作为“算学”教科书的著名的算经十书之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b2a是兔数,a(b2a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。 设x为雉数,y为兔数,则有 xyb, 2x4ya 解之得 yb2a, xa(b2a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。 5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。 经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。 问题:我们该如何定价才能赚最多的钱? 答案:日租金360元。 虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。 当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。 6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。把1,2,3,41986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。答案:6633、 一老农带一条狗、一只鸡、一袋米坐船过河,但船过小一次只能带两样东西过河,且狗会咬死鸡,鸡会吃米,问老农怎么办?4、证明 45 的证明解:16362545422 x4 x9/2522 x5x 9/2两边同时加上(9/2)2 ,得:422 x4 x9/2 (9/2)2 522 x5 x9/2 (9/2)2根据差平方公式,(ab)2 a22abb2 ,得:(49/2)2 (59/2)2两边同时开方,得:49/259/2两边同时减去(9/2),得:451.从一楼跑到小王去动物园玩,看到大象很悠闲地站在那儿。他忽然联想到曹冲称象的故事,心想曹冲能称出大象的体重,我能不能量出大象的身长呢? 他眉头一皱,计上心来,从口袋里拿出两支铅笔,先手握短铅笔伸直胳膊,用眼睛瞄准铅笔两端正好看到大象的首尾。然后换握长铅笔,瞄准铅笔两端问前走了二十步,正好又看到大象的首尾。他量一量两支铅笔的长分别为8cm和16cm,胳膊长为40cm。每一步长50cm,就很快算出大象身长为4米。小花十分惊奇,问小三是怎么算出来的? 2.四楼需要6秒,问以同样的速度再跑到八楼需要多少秒? 3.一群孩子是兄弟姐妹,其中有姐弟两人茌说话,弟弟说自己所拥有的兄弟的人数比姐妹的人数多一个,那么,姐姐所拥有的兄弟比姐妹多几人呢? 4.小明向一个底面积为24X18厘米,高30厘米的水箱注入占其容积三分之二的水。他是一个好奇的男孩,想知道他刚买来的一个铅块的体积。铅块放入水箱后,水面升高到22cm,铅块的体积是多少立方厘米? 1生活中的数学题25例大头儿子和小头爸爸共同开了一家麦当劳店,他们晚上一起计算当天的营业额,发现账面上多出32.13元钱,后来发现是一笔钱的小数点点错了一位,原来这笔钱是( )王老师给学生买了72支钢笔,共用去67.9元,其中和外的数学已记不表了,请帮助老师算一算。每支钢笔多少钱?笑笑喝一瓶果汁,分四次喝完。第一次喝了一瓶果汁的六分之一,然后加满水;第二次喝了一瓶的三分之一,然后再加满水,第三次喝了半瓶,又加满水;第四次一饮而尽,笑笑喝的果汁是( ),喝的水是( )。某小学为每个学生编号,设定号码未尾为1表示男生,为2表示女生。如96410252表示“96年入学,在四年级一班,025号同学,该同学是女生”。那么,01110101表示的学生是( )年入学,在( )年级( )班,学号是( )的一名( )同学。假若你是六年级三班的36号同学,请用以上方法编出自己的学号。某地区小灵通移动电话的交费方式有以下两种:(1)免交月租费。通话每分钟0.25元,每月基本消费15元;(2)交月租费,每月交月租费18元,通话每分钟0.1元。请算一下,每月通话时间为100分钟和200分钟,选择那种方式比较划算?如果你爸爸也有小灵通,你认为他用那种方式交费比较好?为什么?某城市自来水收费是这样规定的:每户每月用水15吨(含15吨)按0.9元一吨收费,超过15吨的,其超出部分按3元一吨收费。某户四月份用水21吨,应交多少元水费?一次,甲、乙、丙三位朋友合乘一辆出租车出去办事,出发时三人商量好,车费由三人合理分摊。早在行到6千米的地方下车,乙在行到12千米的地方下车,丙一直行到18千米的地方下车,并付了36元的车费,请问他们三人各应承担多少车费才比较合理?一农妇提着一蓝子鸡蛋去卖,第一次卖掉了全部鸡蛋的一半又多半个,第二次卖掉剩下的一半又多半个,第三次卖掉剩下的一半又多半个,最后篮子里还剩一个鸡蛋,问:农妇原来有多少个鸡蛋?某食品店有5箱饼干,如果从每个箱子里取出15千克,那么5个箱子里剩下的饼干正好是原来的两箱饼干,原来每个箱子里装多少千克饼干?小亮和爸爸坐出租车去郊游,10千米以内收费5元,超过10千米时,每千米收费0.3元,下车时小亮共交出租车费9.2元,求出租车行了多少千米?六(一)班52名同学去海洋馆游玩,中午时老师让贝贝给大家买饮料。由于买的多,阿姨给以买一箱送一盒的优惠,共付了4箱的钱,正好每人一盒。你知道每箱饮料有多少盒吗?某小学要买60个足球,现在有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同:甲店:买10个足球免费赠送2个,不足10个不赠送;乙店:每个足球优惠5元;丙店:购物每满200元,返还现金30元。为了节省费用,希望小学应到哪个商店购买,为什么?爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米以外),下面是已知的一些数据,人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索应多长才能确保安全?某中学图书馆购买了3种精装本和5本平装本汉语词典,共用去27.8元。如果用一个精装本调换两本平装本还得再付1元钱,精装本词典每本多少元?六年级有甲、乙、丙三个班,已知甲、乙两班共有50人,乙、丙两班共有70人,甲、丙两班共有60人,问甲、乙、丙三个班各有多少人?小王用140元买了一件外衣,一顶帽子和一双鞋。外衣的价钱比帽子贵90元,外衣和帽子一共比鞋贵120元,问一双鞋垢价钱是多少元?甲、乙、丙三个共出27元合伙买了一批练习本,每人出了9元。由于乙和丙分别比甲多拿15本,国此,乙和丙每人都要给甲1.5元,问三人合伙买了多少本练习本?某小学组织325名师生去春游,已知大客车限乘40人,每天每辆1000元,小客车限乘25人,每天每辆650元,问怎样租车才合适?有两则招聘启事, A公司的工资采用年薪制,起薪为每年10000元,以后逐年增加,每年增加600元;而B公司采用半年薪制,起薪为每半年5000元,以后每半年增加200元,问那个公司的条件更优厚?A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一人24天的食物和水,如果不准将部分食物存放于途中,问:其中一个人最远可以深入沙漠多少千米?如果可以将部分食物存放于途中以备返回时取用呢?小强、小伟和小华三个人帮助李奶奶把装有相同重量的两个行李箱送到相距1.5千米处的车站,三人决定平均负担运行李的任务,每人每次只能背一箱,问平均每人背多少千米?甲、乙、丙三个进行60米赛跑,当甲冲过终点时,比乙领先10米,比丙领先20米,假如每的速度不变,问当乙到过终点时,比丙领先多少米?李阿姨拿120元钱到市场上买肉,由于肉价降低了五分之一,所以,她买的肉比上次拿同样的钱多买到5千克,问:原来的肉价是每千克多少元?电影票原价若干元,现在每张降价3元,观众增加了一半,收入也增加了五分之一,一张电影票原来是多少元?甲、乙两人在银行存款共9600元,如果两人分别取出自己的存款的40%,再从乙的存款中取出120元给甲,这时两人存款数相等,乙原来存款多少元?