欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    北师大版初中数学九级下册《二次函数所描述的关系》学案.doc

    • 资源ID:4054717       资源大小:214KB        全文页数:9页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大版初中数学九级下册《二次函数所描述的关系》学案.doc

    §2.1 二次函数所描述的关系学习目标:1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.学习重点:1.经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数.学习难点:经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.学习方法:讨论探索法.学习过程:【例1】 函数y=(m2)x2x1是二次函数,则m= 【例2】 下列函数中是二次函数的有( )y=x;y=3(x1)22;y=(x3)22x2;y=xA1个 B2个 C3个 D4个【例3】正方形的边长是5,若边长增加x,面积增加y,求y与x之间的函数表达式【例4】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x,请你得出每天销售利润y与售价的函数表达式课后练习:1已知函数y=ax2bxc(其中a,b,c是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数2当m 时,y=(m2)x是二次函数3已知菱形的一条对角线长为a,另一条对角线为它的倍,用表达式表示出菱形的面积S与对角线a的关系4下列不是二次函数的是( )Ay=3x24 By=x2 Cy= Dy=(x1)(x2)5函数y=(mn)x2mxn是二次函数的条件是( )Am、n为常数,且m0Bm、n为常数,且mnCm、n为常数,且n0Dm、n可以为任何常数6半径为3的圆,如果半径增加2x,则面积S与x之间的函数表达式为( )AS=2(x3)2 BS=9x CS=4x212x9 DS=4x212x97下列函数中,二次函数是( )Ay=6x21 By=6x1 Cy=1 Dy=1§2.2 结识抛物线学习目标:经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验掌握利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质能够作为二次函数y=x2的图象,并比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系学习重点:利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2bxc(a0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好只要注意图象的特点,掌握本质,就可以学好本节学习难点:函数图象的画法,及由图象概括出二次函数y=x2性质,它难在由图象概括性质,结合图象记忆性质学习方法:探索总结运用法.学习过程:【例1】求出函数y=x2与函数y=x2的图象的交点坐标【例2】已知a1,点(a1,y1)、(a,y2)、(a1,y3)都在函数y=x2的图象上,则( )Ay1y2y3 By1y3y2 Cy3y2y1 Dy2y1y3、课后练习1若二次函数y=ax2(a0),图象过点P(2,8),则函数表达式为 2函数y=x2的图象的对称轴为 ,与对称轴的交点为 ,是函数的顶点3点A(,b)是抛物线y=x2上的一点,则b= ;点A关于y轴的对称点B是 ,它在函数 上;点A关于原点的对称点C是 ,它在函数 上4求直线y=x与抛物线y=x2的交点坐标§2.3 刹车距离与二次函数学习目标:1经历探索二次函数y=ax2和y=ax2c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验2会作出y=ax2和y=ax2c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响3能说出y=ax2c与y=ax2图象的开口方向、对称轴和顶点坐标4体会二次函数是某些实际问题的数学模型学习重点:二次函数y=ax2、y=ax2c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2bxc的图象和性质的基础我们在学习时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析学习难点:由函数图象概括出y=ax2、y=ax2c的性质函数图象都由(1)列表,(2)描点、连线三步完成我们可根据函数图象来联想函数性质,由性质来分析函数图象的形状和位置学习方法:类比学习法。学习过程:一、复习:二次函数y=x2 与y=-x2的性质:抛物线y=x2y=-x2对称轴顶点坐标开口方向位置增减性最值例题:【例1】 已知抛物线y=(m1)x开口向下,求m的值【例2】k为何值时,y=(k2)x是关于x的二次函数?【例3】在同一坐标系中,作出函数y=3x2,y=3x2,y=x2,y=x2的图象,并根据图象回答问题:(1)当x=2时,y=x2比y=3x2大(或小)多少?(2)当x=2时,y=x2比y=3x2大(或小)多少?【例4】已知直线y=2x3与抛物线y=ax2相交于A、B两点,且A点坐标为(3,m)(1)求a、m的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的五、课后练习1抛物线y=4x24的开口向 ,当x= 时,y有最 值,y= 2当m= 时,y=(m1)x3m是关于x的二次函数3抛物线y=3x2上两点A(x,27),B(2,y),则x= ,y= 4当m= 时,抛物线y=(m1)x9开口向下,对称轴是 在对称轴左侧,y随x的增大而 ;在对称轴右侧,y随x的增大而 5抛物线y=3x2与直线y=kx3的交点为(2,b),则k= ,b= 6已知抛物线的顶点在原点,对称轴为y轴,且经过点(1,2),则抛物线的表达式为7在同一坐标系中,图象与y=2x2的图象关于x轴对称的是( )Ay=x2By=x2Cy=2x2Dy=x28抛物线,y=4x2,y=2x2的图象,开口最大的是( )Ay=x2By=4x2Cy=2x2D无法确定9对于抛物线y=x2和y=x2在同一坐标系里的位置,下列说法错误的是( )A两条抛物线关于x轴对称B两条抛物线关于原点对称C两条抛物线关于y轴对称D两条抛物线的交点为原点10二次函数y=ax2与一次函数y=axa在同一坐标系中的图象大致为( )11求符合下列条件的抛物线y=ax2的表达式:(1)y=ax2经过(1,2);(2)y=ax2与y=x2的开口大小相等,开口方向相反;(3)y=ax2与直线y=x3交于点(2,m)答案2.1例1 2 例2 B 例3 y=(5+x)(5+x)-25 例4 y=(x-40)300-5(x-50) 1 a0 a=0 b0 a=0 b0 c=02 m=-2 3 4 c 5 B 6 D 7 A2.2例1(2,4) (-1,1) 例2 A1y=-2x2 2 x=0 (0,0) 3 b=0.25 (-0.5,0.25) y=x2 (0.5,-0.25) y=-x24(0,0) (1,1) 2.3 1下0 -4 2 -2 3 x=3,-3 y=-12 4 -2 ,x=0 增大 减小5 b=12 k=4.5 6 y=-2x2 7B 8C 9C 10C11y=2x2 y=-0.5x2 y=x2

    注意事项

    本文(北师大版初中数学九级下册《二次函数所描述的关系》学案.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开