欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    抽象函数的对称性奇偶性周期性总结习题.doc

    • 资源ID:4045112       资源大小:1.20MB        全文页数:19页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    抽象函数的对称性奇偶性周期性总结习题.doc

    抽象函数的对称性、奇偶性与周期性总结及习题 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期。分段函数的周期:设是周期函数,在任意一个周期内的图像为C:。把个单位即按向量在其他周期的图像:。2、奇偶函数:设若若。分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:点 (2)轴对称:对称轴方程为:。关于直线函数关于直线成轴对称。关于直线成轴对称。二、函数对称性的几个重要结论(一)函数图象本身的对称性(自身对称)若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。1、 图象关于直线对称推论1: 的图象关于直线对称推论2、 的图象关于直线对称推论3、 的图象关于直线对称2、 的图象关于点对称推论1、 的图象关于点对称推论2、 的图象关于点对称推论3、 的图象关于点对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数与图象关于Y轴对称2、奇函数与图象关于原点对称函数3、函数与图象关于X轴对称4、互为反函数与函数图象关于直线对称5.函数与图象关于直线对称 推论1:函数与图象关于直线对称推论2:函数与 图象关于直线对称推论3:函数与图象关于直线对称 (三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数yf(x)关于直线xa轴对称,则以下三个式子成立且等价:(1)f(ax)f(ax) (2)f(2ax)f(x) (3)f(2ax)f(x)性质2 若函数yf(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(ax)f(ax)(2)f(2ax)f(x)(3)f(2ax)f(x)易知,yf(x)为偶(或奇)函数分别为性质1(或2)当a0时的特例。2、复合函数的奇偶性定义1、 若对于定义域内的任一变量x,均有fg(x)fg(x),则复数函数yfg(x)为偶函数。定义2、 若对于定义域内的任一变量x,均有fg(x)fg(x),则复合函数yfg(x)为奇函数。说明:(1)复数函数fg(x)为偶函数,则fg(x)fg(x)而不是fg(x)fg(x),复合函数yfg(x)为奇函数,则fg(x)fg(x)而不是fg(x)fg(x)。(2)两个特例:yf(xa)为偶函数,则f(xa)f(xa);yf(xa)为奇函数,则f(xa)f(ax)(3)yf(xa)为偶(或奇)函数,等价于单层函数yf(x)关于直线xa轴对称(或关于点(a,0)中心对称)3、复合函数的对称性性质3复合函数yf(ax)与yf(bx)关于直线x(ba)/2轴对称性质4、复合函数yf(ax)与yf(bx)关于点(ba)/2,0)中心对称推论1、 复合函数yf(ax)与yf(ax)关于y轴轴对称推论2、 复合函数yf(ax)与yf(ax)关于原点中心对称4、函数的周期性若a是非零常数,若对于函数yf(x)定义域内的任一变量x点有下列条件之一成立,则函数yf(x)是周期函数,且2|a|是它的一个周期。f(xa)f(xa) f(xa)f(x)f(xa)1/f(x) f(xa)1/f(x)5、函数的对称性与周期性性质5 若函数yf(x)同时关于直线xa与xb轴对称,则函数f(x)必为周期函数,且T2|ab|性质6、若函数yf(x)同时关于点(a,0)与点(b,0)中心对称,则函数f(x)必为周期函数,且T2|ab|性质7、若函数yf(x)既关于点(a,0)中心对称,又关于直线xb轴对称,则函数f(x)必为周期函数,且T4|ab| 6、函数对称性的应用 (1)若,即 (2)例题 1、; 2、奇函数的图像关于原点(0,0)对称:。 3、若的图像关于直线对称。设.(四)常用函数的对称性三、函数周期性的几个重要结论1、( ) 的周期为,()也是函数的周期2、 的周期为3、 的周期为4、 的周期为5、 的周期为6、 的周期为7、 的周期为8、 的周期为9、 的周期为10、若11、有两条对称轴和 周期推论:偶函数满足 周期12、有两个对称中心和 周期推论:奇函数满足 周期13、有一条对称轴和一个对称中心的四、用函数奇偶性、周期性与对称性解题的常见类型灵活应用函数奇偶性、周期性与对称性,可巧妙的解答某些数学问题,它对训练学生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。1.求函数值例1.(1996年高考题)设是上的奇函数,当时,则等于()(A); (B); (C); (D).例2(1989年北京市中学生数学竞赛题)已知是定义在实数集上的函数,且,求的值.。2、比较函数值大小例3.若是以2为周期的偶函数,当时,试比较、的大小.解:是以2为周期的偶函数,又在上是增函数,且,3、求函数解析式例4.(1989年高考题)设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.解:设时,有 是以2 为周期的函数,.例5设是定义在上以2为周期的周期函数,且是偶函数,在区间上,求时,的解析式.解:当,即,又是以2为周期的周期函数,于是当,即时,4、判断函数奇偶性例6.已知的周期为4,且等式对任意均成立,判断函数的奇偶性.解:由的周期为4,得,由得,故为偶函数.5、确定函数图象与轴交点的个数例7.设函数对任意实数满足, 判断函数图象在区间上与轴至少有多少个交点.解:由题设知函数图象关于直线和对称,又由函数的性质得是以10为周期的函数.在一个周期区间上,故图象与轴至少有2个交点.而区间有6个周期,故在闭区间上图象与轴至少有13个交点.6、在数列中的应用例8.在数列中,求数列的通项公式,并计算分析:此题的思路与例2思路类似.解:令则不难用归纳法证明数列的通项为:,且以4为周期.于是有1,5,9 1997是以4为公差的等差数列,由得总项数为500项,7、在二项式中的应用例9.今天是星期三,试求今天后的第天是星期几分析:转化为二项式的展开式后,利用一周为七天这个循环数来进行计算即可.解:因为展开式中前92项中均有7这个因子,最后一项为1,即为余数,故天为星期四.8、复数中的应用例10.(上海市1994年高考题)设,则满足等式且大于1的正整数中最小的是(A) 3 ; (B)4 ; (C)6 ; (D)7.分析:运用方幂的周期性求值即可.解:,9、解“立几”题例是单位长方体,黑白二蚁都从点A出发,沿棱向前爬行,每走一条棱称为“走完一段”。白蚁爬行的路线是黑蚁爬行的路线是它们都遵循如下规则:所爬行的第段所在直线与第段所在直线必须是异面直线(其中.设黑白二蚁走完第1990段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是(A)1; (B);(C) ; (D)0.解:依条件列出白蚁的路线立即可以发现白蚁走完六段后又回到了A点.可验证知:黑白二蚁走完六段后必回到起点,可以判断每六段是一个周期.1990=6,因此原问题就转化为考虑黑白二蚁走完四段后的位置,不难计算出在走完四段后黑蚁在点,白蚁在C点,故所求距离是例题与应用例1:f(x) 是R上的奇函数f(x)= f(x+4) ,x0,2时f(x)=x,求f(2007) 的值 例2:已知f(x)是定义在R上的函数,且满足f(x+2)1f(x)=1+f(x),f(1)=2,求f(2009) 的值 。故f(2009)= f(251×8+1)=f(1)=2例3:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)=2x+1,则当时求f(x)的解析式例4:已知f(x)是定义在R上的函数,且满足f(x+999)=,f(999+x)=f(999x), 试判断函数f(x)的奇偶性.例5:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)是减函数,求证当时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a5,9且f(x)在5,9上单调.求a的值. 例7:已知f(x)是定义在R上的函数,f(x)= f(4x),f(7+x)= f(7x),f(0)=0,求在区间1000,1000上f(x)=0至少有几个根? 解:依题意f(x)关于x=2,x=7对称,类比命题2(2)可知f(x)的一个周期是10 故f(x+10)=f(x) f(10)=f(0)=0 又f(4)=f(0)=0 即在区间(0,10上,方程f(x)=0至少两个根 又f(x)是周期为10的函数,每个周期上至少有两个根, 因此方程f(x)=0在区间1000,1000上至少有1+=401个根.例1、 函数yf(x)是定义在实数集R上的函数,那么yf(x4)与yf(6x)的图象之间(D )A关于直线x5对称 B关于直线x1对称C关于点(5,0)对称 D关于点(1,0)对称解:据复合函数的对称性知函数yf(x4)与yf(6x)之间关于点(64)/2,0)即(1,0)中心对称,故选D。(原卷错选为C)例2、 设f(x)是定义在R上的偶函数,其图象关于x1对称,证明f(x)是周期函数。(2001年理工类第22题)例3、 设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时f(x)x,则f等于()(1996年理工类第15题)例4、 设f(x)是定义在R上的函数,且满足f(10x)f(10x),f(20x)f(20x),则f(x)是(C )A偶函数,又是周期函数 B偶函数,但不是周期函数C奇函数,又是周期函数 D奇函数,但不是周期函数六、巩固练习1、函数yf(x)是定义在实数集R上的函数,那么yf(x4)与yf(6x)的图象(  )。A关于直线x5对称      B关于直线x1对称C关于点(5,0)对称     D关于点(1,0)对称2、设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时,f(x)x,则f=(   )。A         B         C           D3、设f(x)是定义在(,)上的函数,且满足f(10x)f(10x),f(20x)f(20x),则f(x)是(   )。A偶函数,又是周期函数     B偶函数,但不是周期函数C奇函数,又是周期函数     D奇函数,但不是周期函数4、f(x)是定义在R上的偶函数,图象关于x1对称,证明f(x)是周期函数。参考答案:D,B,C,T2。5、在数列求=-1一、选择题(每题5分,共40分)1定义在R上的函数既是奇函数又是周期函数,若的最小正周期是,且当时,则的值为 A. B. C. D. 2偶函数yf(x)满足条件f(x1)f(x1),且当x1,0时,f(x)3x,则f()的值等于( )A1 B. C. D13函数( ) 4设是定义在上的奇函数,且当时,.若对任意的,不等式恒成立,则实数的取值范围是( )A B C D 5函数f(x)=的最大值是( )A. B. C. D. 6 已知是定义在上且以3为周期的奇函数,当时,则函数在区间上的零点个数是( ) A3 B5 C7 D98.若函数是偶函数,则常数的取值范围是( ) A.B.C.D.9已知a为参数,函数是偶函数,则a可取值的集合是( )A0,5 B-2,5 C-5,2 D1,200910已知是偶函数,而是奇函数,且对任意,都有,则的大小关系是( ) A B C D二、填空题(每题6分,共36分)11已知在1,1上存在,使得=0,则的取值范围是_;12设是定义在R上的奇函数,当x0时,=,则 . 13函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是 14若是奇函数,则实数 15若函数为偶函数,则实数 16若是奇函数,则a= 17对于偶函数,其值域为 ; 三、解答题(15-18题每题11分;19、20各15分;共74分)18已知(1)求函数的定义域;(2)判断并证明函数的奇偶性;(3)若,试比较与的大小19(本小题满分14分)已知定义域为的函数是奇函数 求函数的解析式; 判断并证明函数的单调性; 若对于任意的,不等式恒成立,求的取值范围. 20(本小题12分)已知函数是奇函数,且(1)求,的值;(2)用定义证明在区间上是减函数. 21已知: 是定义在区间上的奇函数,且.若对于任意的时,都有(1)解不等式(2)若对所有恒成立,求实数的取值范围22(本小题满分14分) 已知奇函数有最大值, 且, 其中实数是正整数.求的解析式;令, 证明(是正整数).参考答案1C【解析】试题分析:根据题意,由于定义在R上的函数既是奇函数又是周期函数,且可知的最小正周期是,那么可知=-=-,故可知答案为C考点:函数的奇偶性以及周期性点评:主要是考查了函数的性质的运用,属于基础题。2D【解析】试题分析:根据题意,由于偶函数yf(x)满足条件f(x1)f(x1),说明函数的周期为2,f(-x)=f(x) 当x1,0时,f(x)3x,则对于,f()=f(2+)=f(2- )=3=1故可知答案为D.考点:函数的奇偶性点评:主要是考查了函数的奇偶性以及函数解析式的运用,属于基础题。3A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.4B 【解析】试题分析:利用“排除法”。a=0时,不等式不恒成立;排除A,D。a=1时,不等式不恒成立,排除C,故选B。考点:函数的奇偶性,二次函数的图象和性质。点评:中档题,本题综合考查函数的奇偶性,二次函数的图象和性质,利用“排除法”,简化了解题过程。5C【解析】因为函数f(x)=,利用二次函数的性质可知,分母的最小值为,那么所求的最大值是,选C6D【解析】当x(0,)时f(x)=ln(x2-x+1),令f(x)=0,则x2-x+1=1,解得x=1,又函数f(x)是定义域为R的奇函数,在区间,上,f(-1)=-f(1)=0,f(0)=0f()=f(+3)=f()=-f(),f(-1)=f(1)=f(0)=f()=f()=0又函数f(x)是周期为3的周期函数,则方程f(x)=0在区间0,6上的解有0,1,2,3,4,5,6,共9个.7(A) 【解析】 是周期为2的奇函数, 又,当01时, 故选(A)8B【解析】9C【解析】10A【解析】11(,+)U(,1)【解析】试题分析:根据题意,由于在1,1上存在,使得=0,那么可知3ax+1-2a=0,x= ,在区间1,1上,则根据题意,,的取值范围是(,+)U(,1)。考点:函数的零点点评:主要是考查了函数零点的运用,属于基础题。123【解析】试题分析:因为,是定义在R上的奇函数,是定义在R上的奇函数,所以,考点:函数的奇偶性点评:简单题,奇函数应满足:定义域关于原点对称,。130【解析】试题分析:根据题意,函数是定义在实数集上的不恒为零的偶函数从xf(x+1)=(1+x)f(x)结构来看,要用递推的方法,先用赋值法求得f( )=0,再由f( )=f(+1)依此求解即又,令x=-,可知f( )=0,f( )= f( - ),依次可知赋值得到f( )=f(+1)=0,由于f(1)=0-f(-1),那么可知的值为0.考点:函数奇偶性和递推关系式点评:本题主要考查利用函数的主条件用递推的方法求函数值,这类问题关键是将条件和结论有机地结合起来,作适当变形,把握递推的规律14【解析】试题分析:因为f(x)=0且定义域为R,所以f(0)=0,所以f(0)=。考点:本题考查奇函数的性质。点评:若是奇函数,且在x=0时有定义,则一定为0.做题时一定要灵活应用此性质。150【解析】因为函数为偶函数,那么利用定义可知a=0.16-1【解析】本题考查了函数的奇偶性。解:为奇函数 即: 即解得: 17【解析】18(1)(-1,1)(2)奇函数(3)当时, >;当时,=;当时,<【解析】试题分析:解(1)函数的定义域为(-1,1)(2),是奇函数(3)设,则,即,函数在(-1,1)上是减函数由(2)知函数在(-1,1)上是奇函数,=,当时,则>,>;当时,=;当时,<考点:对数函数点评:函数的单调性对求最值、判断函数值大小关系和证明不等式都有较大帮助。19(1)(2)减函数,证明见解析(3)【解析】试题分析:为奇函数,即 , 解得所以,检验得 ,满足条件. 4分为上的减函数 证明:设则 , 即 为减函数 8分, 为奇函数,则.又为减函数 即恒成立,时显然不恒成立,所以 14分考点:本小题主要考查利用奇偶性求函数解析式,判断并证明函数的单调性,利用函数的单调性求解抽象不等式以及恒成立问题.点评:如果奇函数在处有意义,则这一性质在解题时可以简化运算,特别好用,另外在用定义证明单调性时一定要把结果化到最简,尽量不要用已知函数的单调性来判断未知函数的单调性.解抽象不等式,关键是利用单调性“脱去”外层符号,得出具体的不等式,这一过程中要注意定义域是否有影响.20(1);(2)见解析。【解析】试题分析:(1)由题意知,所以 因为函数是奇函数,所以,所以 由可得(舍去),所以 (2)由(1)可得,设,则因为,且在为增函数,所以,所以,所以,所以在区间上是减函数 考点:本题主要考查利用函数的奇偶性求参数值及利用定义证明函数的单调性.点评:已知一个函数为奇函数,如果有意义,则,这个条件非常好用,常常能使运算变得非常简单;用定义法证明函数单调性时,要严格按照函数单调性的定义,遵循设变量、作差、变形、判断符号、下结论等步骤进行证明,另外需要注意的是变形时要化到最简单的形式,不要用已知函数的单调性来证明未知函数的单调性.用定义法证明函数的单调性是一个非常重要的考点,学生应该注意牢固掌握,灵活应用.21(1)令则有,即.当时,必有 在区间上是增函数 解之所求解集为(2) 在区间上是增函数, 又对于所有,恒成立,即在时恒成立记,则有即解之得,或或的取值范围是 【解析】略22(1)(2)证明略【解析】(1) 由奇函数可得, - 2分x > 0时,由 以及 - 4分可得到, , 只有, ; - 2分(2) , - 2分则由(是正整数),可得所求证结论. - 4分

    注意事项

    本文(抽象函数的对称性奇偶性周期性总结习题.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开