自由电子在磁场中的辐射本科毕业论文1.doc
山西师范大学本科毕业论文自由电子在磁场中的辐射姓 名涂光辉系 别物理与电子信息工程系专 业物理 班 级1003学 号1052010313指导教师袁金照答辩日期成 绩自由电子在磁场中的辐射内容摘要相对论电子的逆康普顿辐射是等离子体中单个带电粒子的辐射,它是经典辐射理论中其中一种研究较为深入的基本过程。该过程可以根据经典辐射理论做出简单,有效而且最为直观的描述。当然,在经典辐射理论中有着不可忽视的地位。逆康普顿辐射(也叫康普顿散射)为相对论电子和辐射场中光子的碰撞引起的辐射,适用于入射光子能量显著地小于相对论电子能量。对于辐射问题的讨论,我们围绕这样四个方面展开的:粒子在单位时间中辐射的能量(辐射功率);不同方向的辐射强度(求辐射角分布);辐射中不同的频率成份的强度(求谱分布)。因此,此方法对于康普顿散射和逆康普顿辐射也是适用的。 【关键词】:经典辐射理论 辐射产生的机制 逆康普顿辐射 康普顿散射 Compton scattering and inverse Compton scatteringAbstractRelativistic electrons in the inverse Compton scattering is a single charged particle radiation in the plasma, it is one of the research in the classical theory of radiation penetrates into the basic process of the process can make simple according to the classical theory of radiation, effective and the most intuitive description, of course, in the classical theory of radiation has significant position in the inverse Compton scattering (Compton radiation) as the relativistic electrons and photons in the radiation field collision caused by radiation, is suitable for the incident photon energy is significantly smaller than that of relativistic electron energy for radiation problem discussion, we around such four aspects: particle radiation energy in unit time (radiation power); Different direction of the radiation intensity of angular distribution (radiation); The strength of the radiation of a different frequency components (distribution), therefore, for this method for the Compton scattering and inverse Compton scattering is applicable. 【Key words】: classical radiation theory the mechanism of radiation the inverse Compton scattering and the Compton scattering 目录一、引言5(一)简介5(二)本论文研究的内容5二、回旋辐射5(一) 回旋辐射的总功率5(二) 回旋辐射的谱7(三) 回旋辐射的角分布10(四) 回旋辐射的偏振特性10三、 同步辐射11(一) 同步辐射的总功率11(二) 同步辐射的谱13(三) 同步辐射的角分布15(四) 同步辐射的偏振特性16四、 曲率辐射17五、 宇宙中的回旋辐射、同步辐射和曲率辐射18六、回旋辐射、同步辐射和曲率辐射的应用18参考文献19致谢19自由电子在磁场中的辐射学生姓名:涂光辉 指导老师:袁金照一、引言(一)简介在磁场中,自由电荷(通常为自由电子)可以通过三种途径来进行电磁辐射:回旋辐射(Cyclotron Radiation)、同步辐射(Synchrotron Radiation)和曲率辐射(Curvature Radiation)。这三种辐射都是非热辐射,其辐射特征与黑体辐射有显著的不同。在磁场不是很强的情况下,磁场中的电子在洛伦玆力的作用下作加速运动。电荷在力的作用下作加速运动时,将会发射电磁波。当电子的速度不大(远小于光速)时,电子为非相对论电子,在磁场中作加速运动产生的辐射被称为回旋辐射。当电子的的能量非常大时,使得回旋速度v接近于光速c,即此时的电子为极端相对论电子。相对论电子在磁场中作加速运动产生的辐射被称为同步辐射。这些现象分别首先在回旋加速器和同步加速器中得以证实而命名。但是在极强磁场(>102-104特斯拉)中,记自由电子的速度v与磁场B间的夹角为0<<2/。在垂直磁力线方向,自由电子做螺旋运动。由于电子受到的洛伦玆力极大,螺旋半径0,因此自由电子的螺旋运动可以忽略。在平行磁力线方向,电子不受力的作用,将沿磁管自由运动。但是在大尺度上,磁管是弯曲的。电子在沿磁管做曲线运动时,存在受向心加速度,会产生另一种电磁辐射。这种由于磁力线的弯曲而产生的辐射称为曲率辐射。(二)本论文研究的内容在磁场中作加速运动的电子由非相对论极限(即电子的速度v<<c)z过渡到相对论极限(即电子的速度cv或1),辐射的总功率由小变大;辐射的角分布从近似各向同性变到具有明显的方向性;谱的特点则是从单色变到光滑的连续谱,且辐射的频率明显增高(在给定的磁场中)。非相对论电子的回旋辐射的特点为什么具有近似各向同性及单色性?同步辐射为什么具有连续谱,且其峰值频率大大高于相同磁场B下的回旋辐射频率?首先对这些问题做定性的物理分析是有益的。通过物理分析可以知道同步辐射具有许多特殊的性能,因此在许多的科学领域中得到应用。目前世界上专门建造了电子贮存环,用来获得同步辐射光源,称光子工厂。二、回旋辐射(一) 回旋辐射的总功率 粒子在磁场中作加速运动产生辐射场,在空间各点的坡亭矢量 因此粒子在单位时间中沿给定方向的单位立体角辐射的能量即辐射角分布公式为 (1) 而 (2)在非相对论极限下(即电子的速度v<<c)此时0,K1,则由(1)式得 (3)其中是n与的夹角有了(3)式即回旋辐射的角分布就可以通过对所有的立体角的积分 (4)对于给定的磁场,一个速度为v的电子的总功率习惯用、来表示,而不是用。因此对于非相对论电子(1)有代入式得其中是投射角,即v与B之间的夹角。而电子的经典半径为则 (5) 代入经典半径=2.82×cm,以及光速值c=3×cm/s则 (erg/s) (6) 对于非相对论电子速度分布是各向同性的,则电子的平均总功率为 (erg/s) (7)由(6)(7)可知非相对论电子的回旋辐射功率与其能量成正比(即正比于),且与磁场的平方成正比。(二) 回旋辐射的谱在均匀磁场中,电子受洛伦玆力的作用,运动的方程为 (8) 解(8)式得电子的轨道方程, (9)其中都是由初始条件定。方程(9)表示非相对论电子在磁场中沿着轴平行于的螺旋线运动,式中的被称为拉摩半径,电子的频率为拉摩频率。从(8)式导出(9)式的条件是,即只适用于的极低速电子,然而实际上即使不近似于1所得到的结果仍然与(9)式非常相似,只不过电子的回旋频率发生变化,不再是拉摩频率而改写为。对于相对论电子在磁场中的圆轨道或螺旋轨道运动的方程和(9)式是一样的,只不过回转频率比拉摩频率小倍。虽然由方程(9)式可知相对论电子是作圆周运动或螺旋运动,然而实际上是接近直线的,因为电子运动的半径很大。例如,在BGs的磁场中,有一个的高能电子,则可知cm,即电子的半径的数量级为百万公里。为简单起见,先对非相对论电子沿着圆轨道运动(即电子速度=0)的回旋辐射谱进行分析。按照电子运动方程(9)式,取圆周运动的圆心在坐标轴的原点,轨道平面选为平面,电子的位置和和分别为 (10) (11)其中 。把(10)、(11)式代入周期运动的谱公式中得 (S=1、2、3) (12)为了使辐射方向有简单的表示,不妨设这样的坐标轴,使的方向为轴。假定观察者在oxz平面内,从而有,则有 ,代入(12)式得积分可表示为=+=+式中含sinu和cosu的两个积分分别和贝塞尔函数及其导数联系着。由贝塞尔函数及的两个积分的表示可以化简上式中含有sinu和cosu的积分,化简得到两个结果,即,其中代表正整数S阶贝塞尔函数,是对其宗量的导数。由此可以算出= (13)式中 (S=1、2、3) (14)上式给出沿方向单位立体角,频率为的单色辐射功率。如果使用贝塞尔函数理论中的一系列恒等式,对上式得全部立体角进行积分得 (15)上式是的单色辐射功率(S=1、2、3),即回旋辐射谱公式。由上式可知非相对论电子辐射谱线是分立的,随着频率而强度减少的飞快(因).基频集中了电子辐射中几乎所有的能量。例如,电子的=0.1时,基频辐射占据全部能量的90%,当电子的速度很低时,就只有基频辐射,而成为单色辐射。上面的讨论是仅限于在作圆轨道运动电子的回旋辐射,当电子作螺旋轨道运动时,它的谱线分布可以通过洛伦玆变换由(14)(15)式得到螺旋轨道电子的辐射谱特点与圆轨道电子的辐射的不同主要在谱线有移动,由圆轨道辐射频率(S=1、2、3)变到螺旋轨道辐射频率,除了谱线发生频移之外,螺旋轨道电子辐射的S次谐波的辐射功率改为上式。(三) 回旋辐射的角分布回旋辐射的能量集中在基频辐射,因此整个辐射的角分布可以通过基频辐射的角分布来表示,以圆周运动的非相对论电子的辐射为例,由(14)式其中,(当),则有由上式表明非相对论电子的回旋辐射的角分布是各向同性的,当时,即沿磁场方向辐射最强,而时沿磁场方向最弱,两者强度差二倍。(四) 回旋辐射的偏振特性 积分式(13)和频率为的单色的振幅值有关,即所以由(13)式可以知道基频辐射的振幅值为 因此,对于,即沿磁场方向的辐射,,,这说明场强的x分量和y分量相等而相位差,即为圆偏振波,对于,即沿垂直磁场方向的辐射,,所以是线偏波,取中间值时,一般为椭圆偏振波。三、 同步辐射(一) 同步辐射的总功率 为得到接受总功率,一般像回旋辐射一样有辐射角分布对()所有的立体角()进行积分而得。如果在相对论效应重要的情况下,上述的积分就不等于辐射的总功率,而这里通过对所有的立体角进行积分。假定,还有如下积分样式:,。由上面的积分样式对(2)式的平方进行积分,即由和代入上面的关系式可知,.又,花括号中的式子变形得同理 综上所述,辐射的总功率可以写成 (15)式中,是洛伦兹因子(Lorenz factor)。 将, 代入(15)式得式中的和分别是速度矢量在平行方向和垂直方向的加速度。当粒子在均匀的磁场中,有即 (16)其中,。由(16)式可知粒子在垂直方向上才有加速度,即,宇宙射线电子比宇宙射线质子获得巨大的能量容易的多,因此认为同步辐射的总功率写成: (17)其中是经典半径。把作为汤姆森横截面和作为静磁场的能量密代入(17)式得 (18)由上式看起来好像是电子和静磁场相互碰撞,由于这个原因同步辐射也被命名为磁韧致辐射。现在假设每电子的能量为,且相对论电子是各向同性的,则同步辐射的平均总功率为 (19)把经典半径cm 及光速值代入(17)、(19)式得 (erg/s) (20) (erg/s) (21)由(20)(21)式可知相对论电子辐射功率不仅与其能量成正比(及正比于),而且还正比于洛伦兹因子(Lorenz factor)的平方,且正比于磁场强度的平方。 比较(6)与(20)或(7)与(21)可知相对论电子同步辐射的功率远大于非相对论电子回旋辐射的功率.当电子的的速度接近光速c(即vc)时,同步辐射的总功率为 对于相对论电子同步辐射的总功率公式进行化简即 (22) 由于其中是电子的静能,因此。当成电子的能量。所以(22)式就可以写成,上式说明相对论电子同步辐射的总功率与其能量E的四次方成正比。例如,北京的同步辐射光源(即正负电子对撞机)来说,其能产生最高能量的电子E=2.8GeV,而0.5MeV,。再由(4)与(22)式比较可知,同步辐射的总功率是回旋辐射的倍,即相对论电子同步辐射的功率比非相对论电子回旋辐射远远地增强,这是由于相对论时空变换的结果 。(二) 同步辐射的谱对于相对论电子,仍先考虑电子作圆轨道运动,谱公式的推导过程和非相对论电子回旋辐射是相同的,因此同步辐射谱的公式为(15)式。同步辐射谱公式虽然与回旋辐射的相同,但是基频远远比回旋辐射的基频小(由于r1),因此在相对论电子情况下,相邻的谱线间隔()变得很小,实际上已经成为了连续谱。对于同步辐射公式(15)式作进一步修改,同步辐射的频率基本集中于峰值及其旁边(由于),这说明(15)式中的正整数S应取大数(即S1).而对于大数阶数S和大宗量的贝塞尔函数,将通过Watson和Nicolson导出的公式把(15)进行化简,这些公式为,以及 (23)式中,则代表n阶修正的贝塞尔函数。 上面提到同步辐射的谱线间隔变得更小(由于),且,因此分立的谱线已极不明显,而成为光滑的连续谱,因此(15)式将表示成单位频率间隔中的辐射功率,即连续谱公式由(23)式代入(15)式得.(S>>1) (24)用代换,代换S得 (25)其中是拉摩频率,参量定义为,其表示辐射的临界频率,比更高的频率的辐射极弱,实际辐射终止与。(24)式即相对论电子的同步辐射谱公式。通过谱公式可知谱线的形状取决于中括号内的函数,即) (26) 因此可以把当作无量纲的同步辐射谱。理论谱(26)在测量电子加速器中辐射的实验中得到证实,磁场为最大的电子能量为100MeW(相当于),测量的结果证实了观测到从直到的连续谱,其中,辐射延伸到呈蓝色的可见光波段。对于螺旋轨道相对论电子的谱公式和(24)式非常类似,只是把式中的都用代替即可,从而得到螺旋轨道相对论电子的同步辐射的谱公式为由上式可知螺旋轨道电子的同步辐射的谱形和圆轨道电子的形似,只是临界频率发生了改变,还有观察者收到的辐射脉冲周期小于原来发射的周期,这是由于同步辐射具有很强的方向性。(三) 同步辐射的角分布对(2)式中的三矢积进行展开得上式进行平方运算得 (27)构建一个坐标系沿着z轴,在-z平面相对于的夹角为i,单位矢量描述有构成的的观测方向,即 在x方向有加速度为和z方向有速度为的电荷在x-z平面的辐射角的模型,在非相对论和相对论运动的情况下,由上面的公式和通过(27)是给出接收功率的角分布,角i是推迟时间T内和的夹角,当平行于(即)时,可以得到当垂直于(即)时可以得到 如图是极端情况下的非相对论运动和相对论运动的角分布图形 其中的非相对论电子的角分布和的图1及图2给出的相对论电子辐射角分布有很大的不同,前者有很宽的角范围的辐射,而后者具有方向性,这种方向性也加作相对论粒子辐射的集束效应,以上的不同主要是由于高能粒子在其辐射方向上的多普勒效应而增强的,而其他方向,特别是背靠着速度的方向上辐射剧减。(四) 同步辐射的偏振特性为方便说明同步辐射的偏振,必须将电矢沿两个与辐射方向垂直的,并且彼此互相垂直的方向,分解。规定为方向垂直于磁场及传播方向的单位矢,而为垂直于和传播方向的单位矢。也就是磁场在垂直于波传播方向的平面的投影方向。电矢,由于同步辐射有很强的方向性,所以对于一个投射角是而速度为的电子,电子的瞬时速度方向(图中用表示)与它的辐射方向(的方向在图中用表示)几乎是一致的,即。辐射方向和速度方向间的微小差异我们用表示。沿方向传播的同步辐射,其电矢的两个分量正好有的相位差,这表明同步辐射是椭圆偏振波,偏振椭圆的短轴与长轴分别平行于,其椭率b有下式给出:其中是个小量,宗量,。由上式椭圆偏振光是左旋或右旋,由的正负号决定,是很小的数,因此有。尤其在时,即电子速恰好指向观察者,辐射将成为线偏振。 四、 曲率辐射在磁场很强的情况下,非相对论热电子的回旋辐射是很很重要的机制,然而相对论电子得不到持续不断的大量的提供,而使得同步辐射机制的重要性变小,这是由于相对论电子在强磁场条件下寿命太短。虽然相对论电子在垂直于场强的速度很快消亡(转变成的非相对论电子),但是在平行于磁场的速度仍保持相对论性,此时在磁场中就会产生一种新的辐射机制曲率,它是同步辐射的补充,有很大的重要性。曲率辐射是指相对论电子在很强的磁场中沿弯曲磁力线运动是而产生的辐射。由于电子沿磁力线的运动是相对论运动,于是其运动类似沿圆轨道运动的相对论电子,因此曲率辐射的性质与同步辐射相似。五、 宇宙中的回旋辐射、同步辐射和曲率辐射同步辐射是非热辐射,其辐射主要集中在在射电波段。宇宙空间中,许多Seyfert星系在光学波段很暗,但在射电波段却异常地亮,比太阳差不了多少(注意,这些河外星系到地球的距离是太阳到地球距离的10>12倍)。这类Seyfert星系在射电波段的辐射光度L-,其中谱指数通常为0.7<<1.2。同时,射电波段的辐射是高度偏振的。这说明这类Seyfert星系发射同步辐射。在Seyfert星系的外围存在尺度达几千光年的射电瓣,射电瓣中有强度为10-9特斯拉的磁场。根据前面的计算公式,相对论性自由电子在5GHz的频率附近可以同步辐射一千万年。但是如果在1015GHz的可见光波段,电子的同步辐射“寿命”就只有几千年。而X射线波段的寿命更短了。对于拥有强磁场(104-109T)的脉冲星,同步辐射和曲率辐射要强烈得多。天文学家认为随着脉冲星旋转的磁场产生强电场(约1014V/m),加速了脉冲星表面的电子和质子。自由电子和质子获得了足够的动能,有些垂直强磁场运动,产生同步辐射,有些沿两磁极处的磁力线运动,产生了曲率辐射。六、回旋辐射、同步辐射和曲率辐射的应用由于同步辐射具有上述特点,它在物理学、材料科学、化学以及生命科学的基础与应用研究,和医学、光刻、显微照相等技术领域有着非常广泛的应用。在研究光子与物质相互作用领域,同步辐射使传统的的光电子谱技术增加了很多功能,因为它和单色仪配合能够获得从真空紫外到x射线范围,波长连续可变的单色光子。因此,在固体表面和界面的研究中促进了微电子工业和化学工业等方面的迅速发展。有波动理论可知,用辐射探测物体时波长必须等于或小于这个物体的线度,而同步辐射具有高分辨率,高亮度X射线的特性,则对研究原子和分子的结构是非常适合的。所得到的显微照相可显示试样的化学成分,由此在分子生物学,微电子学等领域可以提供重要的信息。分子内的电子对X射线光子的吸收是取决于分子相对偏振的取向,而同步辐射的偏振性质可用来测定吸附在表面上的分子的排列取向,这一测定所得到的信息,对研究腐蚀、催化过程是很重要的。同步辐射的独特性能也能给工业与医学方面提供可能性。由于同步辐射源提供的高亮度,高分辨率的X射线束,可以获得清晰度很高的衍射图样,因而可了解试样的晶体结构,为提高药品质量、研制性能优良的聚合物材料提供了依据。目前同步辐射在材料科学每个领域都有应用,例如,波音公司研发了一种新型聚合树脂,在757型飞机上替代铝材,使得飞机重量减少了30%,成本大幅度减少。在医学上,例如使用同步辐射波长可调的特性,可以用来拍摄X光照片,如波长调到对比显示剂碘的吸收边时,是它的灵敏度有二、三个量级的提高,如此和常规的X光源相比较,以同步辐射光源显示冠状动脉的血管图具有更好的效果。参考文献1 Martin Harwit,Astrophysical Concepts (Third Edition),Springer-Verlag, p228-2332 Blumenthol and Could. Rev, Mod, Phys., 42(1970)2373 Bekefi,G,Radiation Processes in Plasmas,wiley,New York,19664 Heitler,“The Quantum Theory of Radiation”,19545 Kompaneets, A .S.,Soviet Phys, JETP, 1957, 4, 730;6 Weymann, R., Phys. Fluilds,1965, 8, 2112;7 Ross, R. R., Weaver, R., McCray, R., Astrophys. J., 1978, 219, p292;8 Sunyaev, R., Zeldovich, Y., Small-scale fluctuations of relic radiation, Astrophysics and Space Science, 1970, 7, p319.致谢在本文的写作过程中,我特别要感谢我的指导老师袁金照,他在最初我无法找到资料,甚至对于自己的写作内容都很生疏的情况下是老师严谨的作风,渊博的学识。不仅帮助我了解了内容,同时再次过程中帮助我掌握了怎样快速、高效完成学习的方法。此外,还让我明白了一个道理,“大多数人在独立完成一件事时,往往是被自己所打败的。”因此,我时刻告诫自己无论遇到多大的困难都要坚持下去,或许有的时候收获是出乎意料的。在学作过程中虽然光键在于自己,但是如果没有老师在百忙之中仍不忘认真地批阅并及时提出宝贵的建议。是不会有今天我对论文的深刻认识和较为圆满的成果。