欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    极限求法综述毕业论文.doc

    • 资源ID:4026088       资源大小:519KB        全文页数:18页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    极限求法综述毕业论文.doc

    毕 业 论 文 学生姓名学 号学院 数学科学学院专 业数学与应用数学题 目极限求法综述指导教师 2010年11月摘要:极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。关键词:夹逼准则, 单调有界准则, 函数的连续性,无穷小量的性质, 洛必达法则, 微分中值定理, 定积分, 泰勒展开式.Abstract:Mathematical analysis of the limit has been a focus of the content, while the series to Limit can be described as diverse, and concluded by induction, we set out the requirements of some commonly used method. This paper summarizes the mathematical analysis of fourteen methods of limit, 1: Limit of using two criteria, 2: the use of arithmetic nature of the limits of the Limit, 3: Limit use of two important limit of the Formula 4: Using a single side of the limit of limit, 5: Using the continuity of functions of limit, 6: the nature of the use of limit infinitesimals, 7: Substitution of equivalent limit Infinitesimal, 8: Using the definition of derivative of the Limit, 9: Using the value theorem of limit, 10: Using the Limit Hospital's Rule 11: the use of the definite integral summation type limit, 12: Convergence of the necessary conditions using the Limit, 13: Limit of using the Taylor expansion, 14: the use of Method substitution limit.显示对应的拉丁字符的拼音 字典 - 查看字典详细内容Keywords:Squeeze guidelines, criteria for bounded monotone function continuity, the nature of infinitesimals, Hospital's Rule, Mean Value Theorem, definite integral, the Taylor expansion.目录一、引言二、极限的求法2.1:利用两个准则求极限2.2:利用极限的四则运算性质求极限2.3:利用导数的定义求极限2.4:利用两个重要极限公式求极限2.5:利用级数收敛的必要条件求极限2.6:利用单侧极限求极限2.7:利用函数的连续性求极限2.8:利用无穷小量的性质求极限2.9:利用等价无穷小量代换求极限2.10:利用中值定理求极限2.11:洛必达法则求极限2.12:利用定积分求和式的极限2.13:利用泰勒展开式求极限2.14:换元法求极限结论参考文献致谢数学分析中极限的求法综述一、引言:极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。数学分析中的基本概念来表述,都可以用极限来描述。如函数yf(x)在处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。二、极限的求法:2.1:利用两个准则求极限。 (1)函数极限的迫敛性(夹逼法则):若一正整数 N,当n>N时,有且则有 . 利用夹逼准则求极限关键在于从的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列和 ,使得。例1 求的极限解:因为单调递减,所以存在最大项和最小项 则 又因为(2):单调有界准则:单调有界数列必有极限,而且极限唯一。 利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。 例:1 证明下列数列的极限存在,并求极限。 证明:从这个数列构造来看 显然是单调增加的。用归纳法可证。 又因为 所以得. 因为前面证明是单调增加的。 两端除以 得 因为则, 从而 即 是有界的。根据定理有极限,而且极限唯一。 令 则 则. 因为 解方程得 所以 2.2:利用极限的四则运算性质求极限极限的四则运算法则叙述如下:若 (1) (2)(3)若 B0 则: (4) (c为常数)上述性质对于总的说来,就是函数的和、差、积、商的极限等于函数极限的和、差、积、商。通常在这一类型的题中,一般都含有未定式不能直接进行极限的四则运算。首先对函数施行各种恒等变形。例如分之,分母分解因式,约去趋于零但不等于零的因式;分之,分母有理化消除未定式;通分化简;化无穷多项的和(或积)为有限项。例;求极限(1) (2)(3)(4) 已知 求解:(1) (2)(3)-1 (4) 因为 所以 2.3:利用导数的定义求极限 导数的定义:函数f(x)在附近有定义,则 如果存在,则此极限值就称函数 f(x)在点 的导数记为 .即在这种方法的运用过程中。首先要选好f(x)。然后把所求极限。表示成f(x)在定点的导数。 例:求 解:取f(x)= .则 2.4:利用两个重要极限公式求极限两个极限公式 但我们经常使用的是它们的变形: 在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。 例:求下列函数的极限4 (1) (2) 解:(1) 1(2) 12.5:利用级数收敛的必要条件求极限 利用级数收敛的必要条件:若级数收敛,则运用这个方法首先判定级数收敛,然后求出它的通项的极限 例: 求 解:设 则 = =0<1由比值判别法知收敛 由必要条件知02.6:利用单侧极限求极限形如:(1) 求含的函数x趋向无穷的极限,或求含的函数x趋于0的极限;(2) 求含取整函数的函数极限; 分段函数在分段点处的极限; 含偶次方根的函数以及或的函数,趋向无穷的极限. 这种方法还能使用于求分段函数在分段点处的极限,首先必须考虑分段点的左、右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。例:求 f(x)在x=0的左右极限 解:1 1 2.7:利用函数的连续性求极限即:这种方法适用于求复合函数的极限。如果 u=g(x) 在点连续 g()=,而y=f(u)在点连续,那么复合函数y=f(g(x)在点连续。即也就是说,极限号可以与符号f互换顺序。 例:求 解:令 ylnu, u 因为 lnu 在点 处连续 所以 12.8:利用无穷小量的性质求极限: 无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。如果,g(x)在某区间有界,那么.这种方法可以处理一个函数不存在但有界,和另一个函数的极限是零的极限的乘积的问题。 例:求 解: 因为 所以 02.9:利用等价无穷小量代换求极限:定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。定理3 当时,下列函数都是无穷小(即极限是0),且相互等价,即有: 。说明:当上面每个函数中的自变量x换成时(),仍有上面的等价关系成立,例如:当时, ; 。 定理4 如果函数都是时的无穷小,且,则当存在时,也存在且等于,即=。 等价无穷小量:当时,称y,z是等价无穷小量:记为 yz 在求极限过程中,往往可以把其中的无穷小量,或它的主要部分来代替。但是,不是乘除的情况,不一定能这样做。 例:求待添加的隐藏文字内容3 解:82.10:利用中值定理求极限: 1:微分中值定理:若函数 f(x) 满足 () 在 连续 .()在(a,b)可导;则在(a,b)内至少存在一点,使 例2:求 解: 2:积分中值定理:设函数f(x) 在闭区间 上连续;g(x) 在上不变号且可积,则在上至少有一点使得 例:求 解: 2.11:洛必达法则求极限:定理:若此定理是对型而言,对于函数极限的其它类型,均有类似的法则。注:运用洛必达法则求极限应注意以下几点:1、 要注意条件,也就是说,在没有化为时不可求导。2、 应用洛必达法则,要分别的求分子、分母的导数,而不是求整个分式的导数。3、 要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会引起错误。4、当 不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。 例1:(1) 求 (2)求 解:(1) 由 所以上述极限是待定型1(2) 它为型 由对数恒等式可得 = 2.12:利用定积分求和式的极限 利用定积分求和式的极限时首先选好恰当的可积函数f(x)。把所求极限的和式表示成f(x)在某区间 上的待定分法(一般是等分)的积分和式的极限。 例:求 解:由于 可取函数 f(x)区间为上述和式恰好是 在 上n等分的积分和。 所以 2.13:利用泰勒展开式求极限泰勒公式是本章的一大难点,大家在学习时首先要清楚泰勒定理成立的条件,清楚泰勒公式、麦克劳林公式的表达形式以及常见的麦克劳林展开式。实际上,泰勒公式在证明、极限计算等方面有着广泛而独到的应用,大家可以通过多做一些相应的练习题来体会。 泰勒展开式:若 f(x)在x=0点有直到n+1 阶连续导数,那么 (其中在0与1之间) 例: 解:泰勒展开式 于是- 所以2.14:换元法求极限: 当一个函数的解析式比较复杂或不便于观察时,可采用换元的方法加以变形,使之简化易求。 例:3 求 解:令 则 1在实际学习中很多题是多种方法综合运用求解的。所以求极限时,首先观察数列或函数的形式选择适当方法,只有方法得当,才能准确、快速、灵活的求解极限。结论本文主要归纳了数学分析中求极限的十四种方法,以上只是众多求解极限方法的一小部分,或许并不全面,大家如有兴趣可以继续探索新的求解方法。因为数学知识博大精深,我们目前只接触到一点点而已,我们应不停的接受知识,虽然我们还处在那数学的基础层,但这并不妨碍我们对数学的喜爱与学习。参考文献:1 陈传璋,金福临编,数学分析(上下册)第二版,高等教育出版社2 蔡子华主编,2005年数学复习大全(经济类),现代出版社3 冯丽珠,变形法求极限的变法技巧 ,武汉职业技术学院学报,2003年3月,35-364 李小光,求极限的若干技巧,西安航空技术高等专科学校学报,2002年3月,20-21

    注意事项

    本文(极限求法综述毕业论文.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开