机电一体化《 自考本科毕业论文》 .doc
毕业设计说明书Beyeshejishuomingshu题 目 组合机床动力滑台液压系统 指导教师姚远 专 业 机电一体化专业 姓 名张冰 准考证号 河南省高等教育自学考试高等教育自学考试毕业设计任务书一、 题目 组合机床动力滑台液压系统 二、 本环节自 2012 年 5 月 日起至 2012 年 9 月 日止三、 进行地点 三门峡职业技术学院 四、 内容要求 能够执行快速前进、工作稳进、快速退回、原位停止等动作。动力滑台可以随时在中途停止运动,液压系统执行元件选为液压缸 指导教师:姚远批准日期高等教育自学考试毕业设计指导老师意见书意见指导老师姚远职称年 月 日高等教育自学考试毕业设计评阅意见书意见评阅老师职称年 月 日高等教育自学考试毕业设计答辩成绩评定书评 语:成绩总评:答辩委员会主任:答辩小组 组长:答辩小组 成员:年 月 日题 目 : 组合机床动力滑台液压系统设计一卧式多轴钻孔组合机床动力滑台液压系统。动力滑台的工作循环是:快进工进快退停止。该系统的主要参数与性能要求如下:切削力Ft=(20000,30000,40000,5000)N,移动部件总重力G=10000N,快进行程L1=100mm,工进行程L2=50mm。快进快退的速度为V快=(4, 6,8,10)m/min,工进速度为V工=(0.25,0.35,0.45,0.55)m/min,加速减速时间t=0.2s,静摩擦系数 fs0.2 ,动摩擦系数fd0.1。该动力滑台采用水平放置的平导轨,动力滑台可任意停止。【摘 要】本论文主要阐述了组合机床动力滑台液压系统,能实现的工作循环是:快速前进 工作进给 快速退回 原位停止,液压技术是机械设备中发展速度最快的技术之一。特别是近年可与微电子、计算机技术相结合、使液压技术进入了一个新的发展阶段。目前,已广泛应用在工业各领域。由于近年来微电子、计算机技术的发展,液压元器件制造技术的进一步提高,使液压技术不仅在作为一种基本的传统形式上占有重要地位而且以优良的静态、动态性能成为一种重要的控制手段。面对我国经济近年来的快速发展,机械制造工业的壮大,在国民经济中占重要地位的制造业领域得以健康快速的发展。制造装备的改进,使得作为制造工业重要设备的各类机加工艺装备也有了许多新的变化,尤其是孔加工,其在今天的液压系统的地位越来越重要。本液压系统的设计,除了满足主机在动作和性能方面规定的要求外,还必须符合体积小、重量轻、成本低、效率高、结构简单、工作可靠、使用和维修方便等一些公认的普遍设计原则。液压系统的设计主要是根据已知的条件,来确定液压工作方案、液压流量、压力和液压泵及其它元件的设计。综上所述,完成整个设计过程需要进行一系列艰巨的工作。设计者首先应树立正确的设计思想,努力掌握先进的科学技术知识和科学的辩证的思想方法。同时,还要坚持理论联系实际,并在实践中不断总结和积累设计经验,向有关领域的科技工作者和从事生产实践的工作者学习,不断发展和创新,才能较好地完成机械设计任务。关键词:组合机床,液压系统,液压缸,液压泵换向阀subject:Combination machine tools power slide a hydraulic system ABSTRACT The face of China's economy developed rapidly in recent years, the growth of machinery manufacturing industry, in the national economy accounts for an important position in the field of manufacturing industry to be healthy and rapid development. Improvement of manufacturing equipment, making an important equipment manufacturing industry as a wide range of machining processes and equipment have been many new changes, especially the hole processing, in today's hydraulic system is becoming more and more important. Boring machine hydraulic system design, in addition to the host in action and meet the performance requirements of the provisions, but also must meet the small size, light weight, low cost, high efficiency, simple structure, reliable operation, convenient use and maintenance of a number of generally recognized design principles. The design of the hydraulic system is the basis of known conditions to determine the work program of hydraulic, hydraulic flow, pressure and hydraulic pumps and other components of the design. To sum up, the need to complete the entire design process to conduct a series of hard work. In recent years, in particular with the microelectronics, computer technology, so that the hydraulic technology has entered a new stage of development. At present, it has been widely used in industry in various fields. In recent years, microelectronics, computer technology, hydraulic components to further improve manufacturing technology, so that hydraulic technology as a fundamental, not only in traditional form but also occupies an important position with excellent static and dynamic performance has become an important means of control.Enter here Abstract In this paper, focused on the combination of dual-use horizontal boring drilling machine hydraulic system, to achieve the duty cycle is: work fast forward feed situ rapid return to stop, hydraulic technology is mechanical equipment in the fastest growing technologies. KEY WORDS: modular machine tool hydraulic system pump hydraulic cylinder valve目 录§第1章 液压传动的发展概况和应用121.1 液压传动的发展概况121.2 液压传动在机械行业中的应用131.3 静液压传动装置的应用13§第2章 液压传动的工作原理和组成152.1 工作原理152.2 液压系统的基本组成17§第3章 液压传动的优缺点193.1 液压传动的优点93.2 液压传动的缺点9§第4章 液压系统工况分析214.1 运动分析214.2 负载分析214.2.1 负载计算214.2.2 液压缸各阶段工作负载计算:214.2.3 绘制动力滑台负载循环图,速度循环图(见图1)224.2.4 确定液压缸的工作压力234.2.5 确定缸筒内径D,活塞杆直径d234.2.6 液压缸实际有效面积计算234.2.7 最低稳定速度验算。234.2.8 计算液压缸在工作循环中各阶段所需的压力、流量、功率列于表(1)23§第5章 确定液压系统图255.1液压泵型式的选择255.2 选择液压回路255.3组成液压系统26§第6章 液压元件选择286.1 选择液压泵和电机286.1.1 确定液压泵的工作压力286.1.2 液压泵的流量286.1.3 选择电机286.2辅件元件的选择316.3 确定管道尺寸32§第7章 液压系统的性能验算337.1管路系统压力损失验算337.1.1 判断油流类型337.1.2 沿程压力损失P1337.1.3 局部压力损失P2337.2 液压系统的发热与温升验算367.2.1 液压泵的输入功率367.2.2 有效功率367.2.3 系统发热功率Ph367.2.4 散热面积367.2.5 油液温升t36§第8章 液压系统最新发展状况388.1 国外液压系统的发展388.2 远程液压传动系统的发展39§第9章 注意事项41§结论42§谢辞43§文 献44前言第1章 液压传动的发展概况和应用1.1液压传动的发展概况液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。第一个使用液压原理的是1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年他又将工作介质水改为油,进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动 的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G·Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 我国的液压工业开始于20世纪50年代,液压元件最初应用于机床和锻压设备。60年代获得较大发展,已渗透到各个工业部门,在机床、工程机械、冶金、农业机械、汽车、船舶、航空、石油以及军工等工业中都得到了普遍的应用。当前液压技术正向高压、高速、大功率、高效率、低噪声、低能耗、长寿命、高度集成化等方向发展。同时,新元件的应用、系统计算机辅助设计、计算机仿真和优化、微机控制等工作,也取得了显著成果。 目前,我国的液压件已从低压到高压形成系列,并生产出许多新型元件,如插装式锥阀、电液比例阀、电液伺服阀、电业数字控制阀等。我国机械工业在认真消化、推广国外引进的先进液压技术的同时,大力研制、开发国产液压件新产品,加强产品质量可靠性和新技术应用的研究,积极采用国际标准,合理调整产品结构,对一些性能差而且不符合国家标准的液压件产品,采用逐步淘汰的措施。由此可见,随着科学技术的迅速发展,液压技术将获得进一步发展,在各种机械设备上的应用将更加广泛。1.2 液压传动在机械行业中的应用机床工业磨床、铣床、刨床、拉床、压力机、自动机床、组合机床、数控机床、加工中心等工程机械挖掘机、装载机、推土机等汽车工业自卸式汽车、平板车、高空作业车等农业机械联合收割机的控制系统、拖拉机的悬挂装置等轻工机械打包机、注塑机、校直机、橡胶硫化机、造纸机等冶金机械电炉控制系统、轧钢机控制系统等起重运输机械起重机、叉车、装卸机械、液压千斤顶等矿山机械开采机、提升机、液压支架等建筑机械打桩机、平地机等船舶港口机械起货机、锚机、舵机等铸造机械砂型压实机、加料机、压铸机等1.3 静液压传动装置的应用静液压传动由于具有无级变速,调速范围宽,可以实现恒扭或恒功率调速,容易实现电控等优点,在工程机械中具有良好的应用前景。但是在铲土运输机械和起重机械中作为主要传动就用却很少,其主要问题是在于国内液压元件质量差,而国外的液压元件价格又太高,会造成主同成本过高。90年代以来,国内已引进了德国林德公司静液压叉车,以及利勃海尔公司静液压推土机的装载机,但在国内市场所占份额很小。从国内工程机械市场的实际出发,本文对静液压传动在国内的推广应用提出探讨性的意见如下:(1)静液压传动叉车在发达国家已经被广泛采用,由于国内部分仓库、码头和工厂等使用部门对叉车的机动性能(尤其是低速性能)、噪声已经有较高的要求,因此这些部门正在成为国内静液压叉车用户。国内叉车和液压元件生产企业应该看到静液压叉车的良好前景,联合研究开发适合我国国情的叉车静液压系统,提供能先进,工作可靠,价格适中的产品。也可以采用与国际静液压元件制造公司联合开发的方式,加快开发的速度。(2)中小型多功能工程机械由于具有挖掘,装载,叉车和起重等多功能,在发达国家已经得到了广泛的应用。随着我国经济建设尤其是城市建设的发展,中小型多功能工程机械也将在我国推广应用,而它们无疑将首先采用静液压传动作为其主要传动装置。国内工程机械企业应该看到中小型多功能工程机械的发前景,联合国内外静液压元件生产企业共同开展对它们的研究开发,以促进中小型多功能工程机械在我国的发展。(3)在国内大型铲土运输和起重机械中,由于配套的静液压与电子控制元件的技术难度大,价格太高,在国内用户中难以接受。因此,在我国暂时不宜将静液压传动研究开发的重点放在与大型铲土运输和起重机械配套上,而应将重点放在上述两类工程机械上。第2章 液压传动的工作原理和组成液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。 驱动机床工作台的液压系统是由油箱、过滤器、液压泵、溢流阀、开停阀、节流阀、换向阀、液压缸以及连接这些元件的油管、接头等组成。2.1 工作原理.快速前进按下起动按钮,电磁经铁1YA通电,电磁换向阀A的左拉接入回路,液动换向阀B在制油液的作用下其左位接入系统工作,这时系统中油液的通路为:进油路:过滤器1变量泵1 换向阀A单向阀C换向阀B左端回油路:换向阀右端节流阀F换向阀A油箱。于是,换向阀B的阀芯右移,使其左位接入系统。主油路进油路:过滤器1变量泵1单向阀3换向阀B行程阀11液压缸左腔。回油路:液压缸右腔换向阀B单向阀6行程阀11液压缸左腔,形成差动连接。此时由于负载较小,液压系统的工作压力较低,所以液控顺序阀5关闭,液压缸形成差动连接,又因变量泵2在低压下输出流量为最大,所以动力滑台完成快速前进。2.工作进给当滑台运动到预定位置时,控制挡铁压下行程阀11。切断了快进油路,电液动换向阀7的工作状态不变(阀B和阀A的左位仍接入系统工作),压力油须经调速阀8、二位二通电磁12才能进入液压缸的左腔,由于油液流经调速阀而使系统压力升高,于是液控顺序阀5打开,单向阀6关闭,使液压缸右腔的油液经阀5、背压阀4流回油箱,使滑台转换为工作进给运动。其主要油路:进油路:过滤器1 变量泵2单向阀3换向阀B 调速阀8电磁阀12液压缸左腔。回油路:液压缸右腔 换向阀B顺序阀5背压阀4油箱。因为工作进给时系统压力升高,所以变量泵2的输出流量便自动减小,以适应工作进给的城要,进给速率的大小由调速阀8来调节。3.死挡铁停留当滑台第二次工作进给完毕,碰上死挡铁后停止前进,停留在死挡铁处,这时液压缸左腔油液的压力升高,当升高到压力继电器13的调整值时,压力继电器动作,发出信号给时间继电器,其停留时间由时间继电器控制,经过时间继电器的延时,再发出信号使滑台返回。4.快速退回时间继电器延时发出信号,使电磁铁YA停电,2YA通电,这时换向阀A的右位接入回路,控制油液换向阀B的右位拉入系统工作,此时,由于滑台返回的负载小,系统压力较低,变量泵2的流量自动增大至最大,所以动力滑台快速退回。这时系统油液的通路为:控制油路进油路:过滤器1变量泵2换向阀A单向阀D换向阀B右端。回油路:换向阀B左端节流阀E换向阀A油箱。主油路进油路:过滤器1变量泵2单向阀3换向阀B液压缸右腔。回油路:液压缸左腔单向阀10换向阀B油箱。动力滑台快速后退,当其快退到一定位置(即工进的起始位置)时,行程阀11复位,使回油路更为畅通,但不影响快速退回动作。5.原位停止当滑台退回到原位时,挡铁压下行程开关而发出信号,使2YA断电,换向阀A、B都处于中位,液压缸失去动力源,滑台停止运动。变量泵2输出的油液经单向阀3换向阀B流回油箱,液压泵卸荷。单向阀3使泵卸荷时,控制油路中仍保持一定的压力。这样,当电磁换向阀A通电时,可保证液动换向阀B能正常工作。3、油源的选择 由液压缸工况图(图2)清楚的看出,其系统特点是快速时低压、大流量、时间短,工进时高压、小流量、时间长,故采用双联叶片泵或限压式变量泵。将两者进行比较(见表3)考虑本机床要求系统平稳、工作可靠。因而采用双联叶片泵。表3 叶片泵的选择双联叶片泵限压式变量叶片泵1流量突变时,液压冲击取决于溢流阀的性能,一般冲击较小1流量突变时,定子反应滞后,液压冲击大2内部径向力平衡,压力平衡,噪声小,工作性能较好。2内部径向力不平衡,轴承较大,压力波动及噪声较大,工作平衡性差3须配有溢流阀、卸载阀组,系统较复杂3系统较简单4有溢流损失,系统效率较低,温升较高4无溢流损失,系统效率较高,温升较低系统工作循环表4 元件名称 动作循环电磁铁行 程 阀压力继电器1Y2Y快 进工 进压 下(工进终了)快 退停止(或中途停止)2.2 液压系统的基本组成1)能源装置液压泵。它将动力部分(电动机或其它远动机)所输出的机械能转换成液压能,给系统提供压力油液。2)执行装置液压机(液压缸、液压马达)。通过它将液压能转换成机械能,推动负载做功。3)控制装置液压阀。通过它们的控制和调节,使液流的压力、流速和方向得以改变,从而改变执行元件的力(或力矩)、速度和方向,根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。4)辅助装置油箱、管路、蓄能器、滤油器、管接头、压力表开关等.通过这些元件把系统联接起来,以实现各种工作循环。5)工作介质液压油。绝大多数液压油采用矿物油,系统用它来传递能量或信息。第3章 液压传动的优缺点3.1 液压传动的优点1)在相同的体积下,液压执行装置能比电气装置产生出更大的动力。在同等功率的情况下,液压执行装置的体积小、重量轻、结构紧凑。液压马达的体积重量只有同等功率电动机的12%左右。2)液压执行装置的工作比较平稳。由于液压执行装置重量轻、惯性小、反应快,所以易于实现快速起动、制动和频繁地换向。液压装置的换向频率,在实现往复回转运动时可达到每分钟500次,实现往复直线运动时可达每分钟1000次。3)液压传动可在大范围内实现无级调速(调速比可达1:2000),并可在液压装置运行的过程中进行调速。 4)液压传动容易实现自动化,因为它是对液体的压力、流量和流动方向进行控制或调节,操纵很方便。当液压控制和电气控制或气动控制结合使用时,能实现较复杂的顺序动作和远程控制。5)液压装置易于实现过载保护且液压件能自行润滑,因此使用寿命长。 6)由于液压元件已实现了标准化、系列化和通用化,所以液压系统的设计、制造和使用都比较方便。3.2 液压传动的缺点1)液压传动是以液体为工作介质,在相对运动表面间不可避免地要有泄漏,同时,液体又不是绝对不可压缩的,因此不宜在传动比要求严格的场合采用,例如螺纹和齿轮加工机床的内传动链系统。2)液压传动在工作过程中有较多的能量损失,如摩擦损失、泄漏损失等,故不宜于远距离传动。3)液压传动对油温的变化比较敏感,油温变化会影响运动的稳定性。因此,在低温和高温条件下,采用液压传动有一定的困难。4)为了减少泄露,液压元件的制造精度要求高,因此,液压元件的制造成本高,而且对油液的污染比较敏感。 5)液压系统故障的诊断比较困难,因此对维修人员提出了更高的要求,既要系统地掌握液压传动的理论知识,又要有一定的实践经验。 6)随着高压、高速、高效率和大流量化,液压元件和系统的噪声日益增大,这也是要解决的问题。 总而言之,液压传动的优点是突出的,随着科学技术的进步,液压传动的缺点将得到克服,液压传动将日益完善,液压技术与电子技术及其它传动方式的结合更是前途无量。第4章 液压系统工况分析4.1 运动分析 绘制动力滑台的工作循环图4.2 负载分析4.2.1 负载计算(1)工作负载工作负载为已知 FL=28000N(2)摩擦阻力负载 已知采用平导轨,且静摩擦因数ud=0.1,动摩擦因数ud=0.2,则: 静摩擦阻力 =0.1×9810N=981N 动摩擦阻力 =0.2×9810N=1962N (3)惯性负载 动力滑台起动加速,反向起动加速和快退减速制动的加速度的绝对值相等,既u=0.2m/s,t=0.05s,故惯性阻力为:=ma=Gu/gt=(9810×0.2)÷(9.8×0.05)=4004N(4)由于动力滑台为卧式放置,所以不考虑重力负载。(5)关于液压缸内部密封装置摩擦阻力Fm的影响,计入液压缸的机械效率中。(6)背压负载 初算时暂不考虑4.2.2 液压缸各阶段工作负载计算:(1)启动时 F1=/cm=1962/0.9=2180N(2)加速时 F2=(+)/cm=(981+4004)/0.9=5538N(3)快进时 F3=/cm=981/0.9N=1090N (4)工进时 F4=(+)/cm=(28000+981)/0.9N=32201N(5)快退时 F5=/cm=981/0.9N=1090N4.2.3 绘制动力滑台负载循环图,速度循环图(见图1) 图14.2.4 确定液压缸的工作压力 参考课本资料,初选液压缸工作压力p1=40×106 Pa4.2.5 确定缸筒内径D,活塞杆直径dA=Fmaxp=7276D=100mm 按GB/T23481993,取D=100mm d=0.71D=71mm 按GB/T23481993,取d=70mm4.2.6 液压缸实际有效面积计算 无杆腔面积 A1=D2/4=3.14×1002/4 mm2=7850mm2 有杆腔面积 A2=(D2d2)/4=3.14×(1002702)/4 mm2=4004 mm2 活塞杆面积 A3=D2/4=3.14×702/4 mm2=3846 mm24.2.7 最低稳定速度验算最低稳定速度为工进时u=50mm/min,工进采用无杆腔进油,单向行程调速阀调速,查得最小稳定流量qmin=0.1L/min A1qmin/umin=0.1/50=0.002 m2=2000 mm2 满足最低稳定速度要求。4.2.8 计算液压缸在工作循环中各阶段所需的压力、流量、功率列于表(1)表(1)液压缸压力、流量、功率计算工况差 动 快 进工 进快 退启 动加 速恒 速启 动加 速恒 速计 算公 式p= F/A3q= u3A3P=pqp=(F+ p2A2) / A1q= u1 A1P=pqp=(F+ p2A1) / A2q= u2 A2P=pq速 度m/su2=0.1u1=3×10-45×10-3u3=0.1有 效面 积m2A1=7850×10-6A2=4004×10-6A3=3846×10-6负 载N32663000163332744326630001633压 力MPa0.850.780.424.41.41.10.99流 量L/min230.3924.0功 率KW0.161.7550.40取 背 压 力p2=0.4MP取 背 压 力p2=0.3MP第5章 确定液压系统图5.1液压泵型式的选择 由工况图可知,系统循环主要由低压大流量和高压小流量两个阶段组成,而且是顺序进行的。从提高系统效率考虑,选用限压式变量叶片或双联叶片泵教适宜。将两者进行比较(见表2)故采用双联叶片泵较好。表2双联叶片泵限压式变量叶片泵1流量突变时,液压冲击取决于溢流阀的性能,一般冲击较小1流量突变时,定子反应滞后,液压冲击大2内部径向力平衡,压力平衡,噪声小,工作性能较好。2内部径向力不平衡,轴承较大,压力波动及噪声较大,工作平衡性差3须配有溢流阀、卸载阀组,系统较复杂3系统较简单4有溢流损失,系统效率较低,温升较高4无溢流损失,系统效率较高,温升较低5.2 选择液压回路(1) 选择油源形式 从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。最大流量与最小流量之比qmax/qmin=0.5/(0.84×10-2)60;其相应的时间之比(t1+t3)/t2=(1+1.5)/56.8=0.044。这表明在一个工作循环中的大部分时间都处于高压小流量工作。从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案,如图2a所示。 (2) 选择快速运动和换向回路 本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。由于要实现液压缸差动连接,所以选用三位五通电液换向阀,如图2b所示。(3) 选择速度换接回路 由于本系统滑台由快进转为工进时,速度变化大(1/2=0.1/(0.88×10-3)114),为减少速度换接时的液压冲击,选用行程阀控制的换接回路,如图2c所示。(4) 选择调压和卸荷回路 在双泵供油的油源形式确定后,调压和卸荷问题都已基本解决。即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸荷,但功率损失较小,故可不需再设卸荷回路。图2 选择的基本回路5.3组成液压系统将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如图3所示。在图3中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀6。为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀13。考虑到这台机床用于钻孔(通孔与不通孔)加工,对位置定位精度要求较高,图中增设了一个压力继电器14。当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。 图3 整理后的液压系统原理图第6章 液压元件选择6.1 选择液压泵和电机6.1.1 确定液压泵的工作压力 由前面可知,液压缸在整个工作循环中的最大工作压力为4.4MPa,本系统采用调速阀进油节流调速,选取进油管道压力损失为0.6MPa。由于采用压力继电器,溢流阀的调整压力一般应比系统最高压力大0.5MPa,故泵的最高压力为 Pp1=(4.4+0.6+0.5)MPa=5.5MPa 这是小流量泵的最高工作压力(稳态),即溢流阀的调整工作压力。 液压泵的公称工作压力Pr为 Pr=1.25 Pp1 =1.25×5.5MPa=6.7MPa 大流量泵只在快速时向液压缸输油,由压力图可知,液压缸快退时的工作压力比快进时大,这时压力油不通过调速阀,进油路比较简单,但流经管道和阀的油流量较大。取进油路压力损失为0.5MPa,故快退时泵的工作压力为 Pp2=(0.99+0.5)MPa=1.49MPa 这是大流量泵的最高工作压力,此值是液控顺序阀7和8调整的参考数据。6.1.2 液压泵的流量 由流量图4(b)可知,在快进时,最大流量值为23Lmin,取K=1.1,则可计算泵的最大流量 K()max =1.1×23Lmin=25.3Lmin在工进时,最小流量值为0.39 Lmin.为保证工进时系统压力较稳定,应考虑溢流阀有一定的最小溢流量,取最小溢流量为1 Lmin(约0.017×10-3m3s)故小流量泵应取1.39Lmin 根据以上计算数值,选用公称流量分别为18Lmin、12Lmin;公称压力为70MPa压力的双联叶片泵。6.1.3 选择电机 由功率图4(c)可知,最大功率出现在快退阶段,其数值按下式计算 Pp= Pp2(qv1+ qv2)p=1.35×106(0.2+0.3)×10-30.75=993W式中 qv1大泵流量,qv1=18 Lmin(约0.3×10-3m3s) qv2小泵流量,qv2=12Lmin(约0.2×10-3m3s) p液压泵总效率,取p =0.75。 (a)(b)(c)图根据快退阶段所需功率99