无人机飞行控制系统仿真研究本科生毕业论文.doc
1 绪 论 本章先主要介绍了无人机进无人机的特点,国内外研究现状和发展趋势及这篇文章的主要内容安排。1.1无人机概述 无人机即无人驾驶飞机,也称为遥控驾驶飞行器,是机上没有驾驶员,靠自身程序控制装置操纵,自动飞行或者由人在地面或母机上进行遥控的无人驾驶飞行器,在它上面装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统实现远距离控制飞行。无人机大体上由无人机载体、地面站设备(无线电控制、任务控制、发射回收等起降装置)以及有效负荷三部分组成。 无人机在航空业已有一百年的历史了。第一驾遥控航模飞机于1909年在美国试飞成功。1915年10月德国西门子公司研制成功采用伺服控制装置和指令制导的滑翔炸弹,它被公认为有控的无人机的先驱。世界上第一架无人机是英国人于1917年研制的。这是一架无线电操纵的小型单翼机,由于当时的许多技术问题,所以试验失败。一直到1921年英国才研制成可付诸实用的第一驾靶机。1918年德国也研制成第一驾无人驾驶的遥控飞机。1920年简氏世界各地飞机首次提到无人机。20世纪30年代初无线电操纵的无人靶机研制成功。在20世纪40至50年代,无人机逐渐得到了广泛使用,但这时主要是作为靶机使用。世界各国空军于20世纪50年代大量装备了无人驾驶飞机作为空靶。进入20世纪60年代后,美国出于冷战需要,将无人机研究重点放在侦察用途方面,这标志着无人机技术开始进入了以应用需求为牵引的快速发展时代。 由于无人机具有低成本、零伤亡、可重复使用和高机动等优点,因此深受世界各国军队的广泛欢迎,近年来得到了快速发展。对于无人机而言,其自动飞行控制系统的设计是至关重要的,它的优劣程度直接影响到无人机各项性能(包括起飞着陆性能、作业飞行性能、飞行安全可靠性能、系统的自动化性和可维护性等)。因此,研究无人机的自动飞行控制技术具有十分重要的现实意义,尤其是在军事上的重要性己经得到国内外的高度重视,而无人机飞行控制系统是无人机能够安全、有效地完成复杂战术、战略使命的基本前提,因此迫切需要加强该领域的研究工作。 无人机的研制早在 20 世纪初就开始了,几乎与有人机同步,自30年代国外首次采用无线电操纵的模型飞机作为靶机以后,无人机的发展十分迅速。40年代,低空低速的小型活塞式靶机投入使用。50年代出现了高亚音速和超音速高性能的靶机,世界各国空军开始大量装备无人机作为空靶。60年代以后,随着微电子技术、导航与控制技术的发展,一些国家研制了无人驾驶侦察机,美国率先研制成功无人驾驶侦察机,并开始用于越战。无人机受到越来越多国家的青睐,发展迅猛。在1982年的中东战争中,以色列在贝卡谷地交战中,用“侦察兵”和“猛犬”无人机诱骗叙军的地空导弹的制导雷达开机,侦查获取了雷达的工作参数并测定了其所在位置。无人机的飞速发展是在海湾战争后,以美国为首的多国部队的无人机在海湾战争中成功地完成了战场侦察、火炮校射、通信中继和电子对抗任务。无人机的研制成功和战场运用,揭开了以远距离攻击型智能化武器、信息化武器为主导的“非接触性战争”的新篇章,由此引发了无人机及其飞行控制研究的热潮。 美国、英国、法国、德国、以色列、澳大利亚等国都针对这个领域投入了相当的研究力量。究其原因,用无人机替代有人驾驶飞机可以降低生产成本,便于运输、维修和保养,而且不用考虑人的生理和心理承受极限。未来无人机在军事和民事上都有广泛的应用前景。在军事领域,采用无人机进行作战和侦察,可以减少人员的伤亡,还能具有超高过载的机动能力。在民用领域,无人机可以完成资源勘测、灾情侦察、通信中继、环境监测等繁重重复或具有一定危险的任务。无人机按其用途和性能确定其属性和全称,如:靶标无人机、侦察无人机、无人诱饵机、电子对抗无人机、攻击无人机、战斗无人机;长航时无人机、超音速无人机、微型无人机、无人直升机等。 中国无人机的研究始于50年代后期,1959年已基本摸索出安-2和伊尔-28两种飞机的自动起降规律。60年代中后期投入无人机研制,形成了“长空”1靶机、无侦5高空照相侦察机和D-4小型遥控飞机等系列,并以高等学校为依托建立了无人机设计研究机构,具有自行设计与小批生产能力。中国生产的各种型号的无人机,基本上满足了国内军需民用,并且逐步走向国际市场。1.2 无人机的特点无人机在现代战争中逐渐替代有人机,得到大力发展和广泛应用,与它自身的优点是分不开的,它与有人驾驶飞机相比,具有以下特点 : (1) 重量轻,尺寸小。据统计世界300多种无人机 (不包括由有人机改成的无人机中,有66.9%的起飞重量不超过200kg,77.4%的重量在500kg以内, 起飞重量大于2000kg的不到10%,没有超过10000kg的。而有人驾驶军用飞机起飞重量均在10000kg以上,有的甚至超过60000kg。无人机的最大尺寸(除了长续航时间飞行器之外)一般不会超过10m,一半以上最大尺寸在 5m 以下,而有人驾驶飞机的最大尺寸一般在12m以上。 (2)费用低。中小型无人机价格范围都在1万100万美元之间,其中有24 %的无人机在10万美元以下,65%的在10万40万美元之间,而且有不少小型无人机在1万美元以下。相比之下,价值几百万到几千万的有人驾驶军用飞机的价格要高很多。另外,在驾驶员培训和燃料消耗方面,无人机也比有人机低很多。(3) 机动性高。无人机不需要考虑人的承载能力,过载可以大于±4g,目前有的无人机机动过载已经达到12g。但有人飞机必须考虑人的承载能力,使机动性受到限制。 (4) 隐蔽性好。无人机尺寸小,结构设计时可大面积采用雷达反射特征与红外辐射特征小的材料制造,在结构与总体布局上可采取" 隐形 "措施,在小发动机上可采取消音措施 。 (5) 适应性强。无人机的发射比较简单,灵便多样,可由地面,舰艇发射或母机携带至空中发射在地面发射时,可由固定式或活动式发射装置发射,滑跑起飞距离一般不超过300m;而有人机起飞滑跑距离在1000m以上,并且对跑道的要求也高。另外,无人机回收也较简单,可以用降落伞或拦截网回收,这为部队灵活机动的军事行动创造了有利条件。 (6) 安全性高。人不必冒生命危险,这是无人机最根本的特点。它能在敌人威胁力强的危险区执行任务,能在复杂恶劣气候条件下或在有核、生物、化学作用的危害区工作,能昼夜长时间连续飞行。1.3无人机的发展趋势 无人机以制造成本与寿命周期费用低、无人员损失几率、较小的尺寸、较强的隐身能力受有人机过载系数的约束、相对简单的维护保养方式等优点。受到了各国的重视。在航天科工集团公司展出的无人装备中,几款新型无人机比较“耀眼”。 SH-1多用途通用无人机采用翼神身融合、大展弦比的无尾飞翼式布局,具有优异的气动特性、良好的隐身性能和较强的装载能力,装载光电侦察设备,可执行空中侦察、目标识别、目标定位、打击效果评估等不同的作战任务。还可用于灾情监测、长线巡查、气象测量等其他用途。 SH-3轻型低速无人机采用高升阻比气动外形,低耗油率活塞发动机,具有体积小,成本低,运输和使用方便等特点。可携带不同任务载荷。进行长时间的空中侦察、巡逻和监视及气象探测等。 无人机在近几场局部战争中的出色表现,使世界各国都非常重视发展无人机。随着无人机技术的发展和完善,无人机必将充斥未来战场。从无人机技术发展和未来作战需要来看,今后无人机将向以下几个方向发展: 长航时的无人侦察机将得到快速发展海湾战争结束后,无人侦察机的研制和发展在世界范围内出现了高潮。美国、俄罗斯、英国、法国和以色列等国家空军,不惜加大投入,发展性能更先进的无人侦察机,深入敌人防空严密的空域,执行有人机难以完成的侦察任务,力争在提高战场透明度和感知能力方面保持领先地位。 美国的RQ1A“捕食者”和“猎人”无人机,英国的“凤凰”无人机,意大利“奎宿九星”26无人机,加拿大的CL289无人机等,都是目前世界上性能比较先进的无人侦察机,特别是美国的RQ1A“捕食者”无人机最大起飞重量850千克,最大载荷205千克,飞行高度3000-5000米,续航时间达60小时,作战半径926千米,配装光电/红外系统、合成孔径雷达侦察设备、惯导/GPS导航系统,可将侦察到的图像及视频录像通过卫星实时传送给地面指挥中心,可提供超长时间的战场监视能力。 另外,侦察直升机也将得到快速发展。侦察直升机是外国陆军拥有的主要空中战术侦察,其全天候、超低空飞行性能好,还能悬停实施侦察,因而具有固定翼飞行所不具备的优势。OH58D是美国陆军师级现役第二代侦察直升机。该机在旋翼顶上设有一个潜望式侦察球,球内有前视红外仪、电视摄像机和激光测距/目标指示器。这种侦察球增强了侦察时的隐蔽性。 进一步发展和提高无人电子战飞机无人机可用作一种高高空、长航时的电子干扰平台,支援各种攻击机和轰炸机作战。由于无人机具有长航时的特点,因此它可以在各种不同的地理环境下支援各方面的攻击部队,并对敌方防护周密的要地的火控攻击雷达进行干扰。 根据需要,今后用于电子战的无人机主要有以下几种:一是用作反辐射无人机。目前投入实空雷达、防空导弹制导雷达、高炮炮瞄雷达及舰载雷达,且具有一定的智能。此外,德国的“达尔”和南非的“云雀”都是反辐射无人机。由于无人机飞行灵活,不易被对方发现,因此未来作战中是反辐射武器的理想平台。二是用作诱饵飞机。将无人机作为诱饵飞机使用, 有两种好处:首先可以引诱敌方雷达开机,使己方迅速掌握敌方的雷达频率和阵地位置,为后续的反辐射武器提供参数。其次是无人机还可以作为诱饵来大量地消耗敌人防空武器,以掩护己方飞机的安全。还有可作为掩护主战飞机突防的诱饵。如美国为了保证B52轰炸机的顺利突防,研制出了名为“鹌鹑”的无人机,每架B52飞机可装3架“鹌鹑”,到达防区上空后投放。“鹌鹑”上所装的电子装备就可以欺骗地面雷达,使它看起来像一架轰炸机,从而提高了B52的突防概率。三是用作电子干扰机。一般的无人机可以装备电子干扰设备,直接飞抵目标上空执行干扰、压制任务,也可以用无人机直接投放干扰物或进行窃听。 发展无人预警机为进一步提高无人机在电子战中的作战效能,一些国家正在积极发展无人预警。例如2000年,美国空军研究实验室提出了一种新型的无人机,其平台形状像一颗钻石,称“传感飞行器”无人机。该无人机最突出的一点,就是将预警雷达天线与侦察雷达天线共装在无人机的机翼上,实现了一架无人机可同时完成对空中目标预警与对地面目标监视的能力,预计能取代今天的预警机和“联合星”战场侦察机。 总之,随着高技术在无人机上不断应用,无人机的作战能力将会持续提高。在未来战场上,特别是未来的空中战场上,无人机将发挥越来越重要的作用。 1.4本文的研究背景及内容安排 本文以国家某高技术课题为研究背景,以某型固定翼无人机为研究对象,着眼于应用常规PID控制技术,分别针对中空、高空、高高等空域来进行无人机飞控系统控制律的设计,并且探讨如何提高飞行控制系统的控制精度等问题。 首先,我们建立了无人机的六自由度数学模型,其中包括非线性动力学方程组和运动学方程组,然后运用小扰动线性化方法建立了无人机纵向运动与横侧向运动的线性化方程:其次,我们介绍了PID控制的作用和一些常用的PID参数的整定方法。这一部分的内容将作为我们后面进行飞行控制律设计的理论基础;接着,我们将无人机的飞行控制分解为纵向控制通道与横侧向控制通道来讨论。本文主要研究了无人机纵向系统中俯仰角控制和高度控制的控制律设计问题。在设计方法上,我们充分利用了根轨迹分析法和频域分析法等经典控制理论对控制器的参数进行了选取,从而设计出了符合要求的PID控制器。最后,我们针对无人机在不同空域的一些典型的状态点用常规PID控制进行了大量的仿真。仿真结果表明:我们所设计的常规PID控制器在多数情况下还是能满足要求的。本文的篇章结构如下所示:无人机数学模型的建立(第二章)控制律设计理论基础第三章)无人机纵向系统控制律的设计与仿真(第四章)结论(第五章)2 无人机的数学模型 本章首先推导了无人机的六自由度非线性数学模型,然后利用小扰动理论将非线性方程组线性化,最后介绍了平衡点的配平方法,并在飞行包线内典型状态点处进行了配平。2.1常用坐标系简介 为了确切地描述飞机的运动状态必须选用适当的坐标系,要想确定飞机在地球上位置就必须采用地面坐标系;要想方便地描述飞机的转动与移动,必须采用机体坐标系或气流坐标系(速度坐标系)。本文只介绍这三种坐标系。2.1.1地面坐标系 地面坐标系是与地球固连的坐标系。原点A固定在地面的某点,铅垂轴向上为正,纵轴与横轴为水平面内互相垂直的两轴。一般取纵轴为飞机的应飞航线。用表示航程、表示侧向偏离(向右为正)、表示飞行高度,见图2-1。 图2-1 地面坐标系2.1.2机体坐标系 机体坐标系是与机固连的坐标系原点在机的重心上,纵轴在飞机对称平面内,平行于翼弦,指向机头为正;立轴也在飞机对称平面内并垂直于,指向座舱盖为正;横轴与平面垂直,指向右翼为正,见图2-2。 图2-2 机体坐标系2.1.3速度坐标系(气流坐标系) 速度坐标系原点也在飞机的重心上,但轴与飞机速度向量V重合;也在对称平面内并垂直于,指向座舱盖为正;垂直于平面,指向右翼为正,见图2-3。 图2-3 速度坐标系2.2飞机的常用运动参数飞机的运动参数就是完整地描述飞机在空中飞行所需要的变量,只要这些参数确定了,飞机的运动也就唯一地确定了。因此,飞机的运动参数也是飞机控制系统中的被控量。2.2.1 姿态角姿态角主要描述了机体坐标系与地坐标系的差异。包括以下三个欧拉角:1)偏航角:轴在地平面上的投影与地轴之间的夹角,以机头左偏航正;2)俯仰角:机体轴 与地平面的夹角,以机头抬头时为正;3)滚转角:机体轴与地轴之间的夹角,以飞机右倾时为正。2.2.2 向量与机体坐标系的关系1)迎角(角)速度向量V在飞机对称平面内的投影,与轴之的夹角,以V的投影在轴之下为正;2)侧滑角:速度向量V与飞机对称平面之间的夹角,以V处于对称平面之右正2.2.3 飞机速度向量与机体坐标系的关系1)航迹倾斜角:速度坐标系中OXq轴与地平面的夹角,以速度向上为正;2)航迹偏转角:轴在地平面内的投影与的夹角,以为投影,左偏为正。2.2.4 控制量与被控量通常利用副翼、方向舵、升降舵及油门杆来进行对飞机的控制。其中副翼、方向舵、升降舵及油门杆的偏转角分别用来表示,其方向规定如下: 副翼左上右下为正;:升降舵下偏为正;:方向舵右偏为正;:油门杆向前推为正。作为被控对象的飞机,往往把三个姿态角当作主要的被控量,在飞行轨迹的控制系统中H、V也作为被控量。因此飞机的输入输出的关系可表示如图: 2-4 无人机的输入输出的关系2.3 前苏联体制下无人机的非线性运动方程组2.3.1 无人机六自由度运动方程式的建立 基于飞机运动刚体性的假设,我们就可以推导出飞机的一般数学模型为一组提阶的非线性微分方程组(推导过程将在附录A中给出),这组方程同样适用于我们所研究的IM定翼无人机。根据牛顿定律,其运动方程应由两部分组成:一部分是以牛顿第二定律(动力定律)为基础的动力学方程组(此时将无人机看作刚体),由此解得无人机相对于机体坐标系的角度向量和角速度向量;另一部分则是通过坐标变换关系得出的运动学方程组(此时将无人机看作质点),确定出无人机相对于地面坐标系的位置向量和速度向璧。无人机在前苏联体制一F的12阶非线性微分方程组如下所示: 式(2·I)一(2.3)中的分别表示作用在无人机上的合力在各机体于是 这里还需要说明一点的是,在实际应用中我们往往不把机体轴上的速度分量Y'气、气作为状态量,而是把V,a,f作为状态A。根据机体坐标系和速度坐标系之1A的关系,我们可以得到机体坐标系下的速度: 2.3.2 无人机六自由度全面运动方程式的简化处理 采用微扰动法对这些非线性的方程进行线性化。先略去发动机引起的陀螺力矩项。然后假定所有运动参数对某一稳定飞行状态的变化极其微小。 都是微量。它们的二次方及乘积可以略去不记。这些角度的正切与正弦看成与这些角度的弧度数相等,而它们的余弦近似看成上,即有: 因此,十二个一阶微分方程组可以化为: 关于各方程式是互相密切联系着的。由于这些方程式描述的运动是围绕飞机横侧方向(侧移、滚动和偏航)而进行的。 因此 这些方程描述的运动叫侧向运动。 其余的方程式,描述的运动是在通过飞机纵轴的平 面(对称平面)内进行的,叫纵向运动。这样,我们就可以把无人机的运动方程分成纵向运动方程组和侧向运动方程组来讨论,从而给我们研究无人机的运动规律带来了极大的方便。无人机这样一个被控对象之所以能分为两种运动,主要是因为它有一个对称平面ox,Y的缘故。但应该指出的是,虽然略去次要因素并假定微扰动后可以分为两种运动来分析,一旦扰动较大时,两种运动就会有相互影响。一般来讲,在略去发动机引起的陀螺力矩时纵向运动对侧向运动影响较小,而侧向运动对纵向运动的影响较大。尽管如此,我们在设计飞行控制律时总是先将一些次要因素略去不计,把一个复杂对象的运动分豁为两个简单运动,从0利用这种简单运动初步确定控制系统的参数。一旦参数确定之后,我们就可以通过较精确的全通运动的计算或通过实物模拟与试飞来加以考验。如发现问题,再对参数进行必要的修正。2.4 无人机数学模型的配平及线性化无人机六自由度模型的力方程组和力矩方程组中均存在着非线性关系,同时方程组中力和力矩与运动参数密切相关,因此,在一般情况下求取无人机运动方程的解析解是非常困难的,只能借助于计算机求取数值解。然而,在通常情况下较之数值解而言,无人机运动方程的解析解对于分析无人机的构形参数与无人机稳定性和操纵性之间的关系更加方便有效,也更具有普遍意义。除此之外,线性化的无人机运动方程也更适合于以成熟的线性系统控制理论为基础的飞行控制系统的设计。因此,在分析无人机的构形参数与飞行稳定性和操纵性之间关系以及对飞行控制系统设计之前,将无人机运动方程进行线性化处理的方法成为目前在实际工程中广泛应用的重要方法之一。2.4.1 无人机平衡点的配平 配平的最终目的是为了给线性化提供一个基准飞行状态,通过调整舵偏度使力和力矩平衡,即使加速度和角加速度为零。首先通过已设计好的飞行包线得到各个状态点的马赫数、高度、质量、力等量,并大致估计当前的飞行状态,进一步对姿态角进行估计得到姿态角初始配平值。由马赫数、高度得到总速,进而由攻角和侧滑角得到气流轴系的速度,也即无风条件下的地速;由马赫数、高度和姿态角还可插值得到各动导数,从而得到气动力和气动力矩,在无动力飞行的情况下即为总的力和矩,再由惯性矩和惯性积即可推得角加速度。然后通过迭代运算配平加速度角加速度为零。并不是所有的配平都要求达到绝对的平衡,除了合力矩为零条件必须满足外,根据不同的飞行状态允许存在加速度。配平的方法有两种,一种是基于simulink模型的配平线性化方法,即采用Matlab平台的simulink controroesign工具箱作为辅助工具进行该无人机自然飞机模型的配平线性化工作;另一种方法是通过计算大小导数,编写配平函数和获取线性化矩阵。本文采用基于simulink非线性模型进行配平。根据任务需求和飞行阶段的不同,在开始配平之前要有选择性的进行输入输出约束和状态定义。进行配平线性化的主要步骤如下: (l)样例机原始数据的准备,主要包括以下基本参数:A.整机及各部件(包括主机翼,平尾,垂尾及各部件的动力学参数)相关的几何尺寸、特征长度和特征面积等;B.整机,例如质量、转动惯量等C.各部件气动力和力矩系数,例如升力曲线斜率、型阻系数等;D.标准大气参数,例如大气密度、重力加速度等。 (2)给定需要配平的无人机运动状态。例如,飞行速度,旋翼转速,高度等。 (3)建立样例机平衡方程组,确定方程组的求解方法,给出预估的配平初始值和计算精度要求等。 (4)以预估的初始值和机体运动参数为起点,计算在体轴系下的合外力和合外力矩,并代入平衡方程组中,进行迭代求解得到一组新的配平值。根据精度要求判断是否收敛,如果收敛,则配平计算结束;否则以新的配平值为起点,重复上述过程,直到收敛为止。 (5)在以设置好的输入输出和配平点下线性化模型。 (6)保存结果,为线性化控制律设计作准备。2.4.2 无人机运动方程的线性化 前面所介绍的关于无人机的非线性数学模型主要用于计算机仿真和验证飞行控制系统的性能。为了便子分析计算如控制器的初步设计,稳定性、可观测性以及操纵性等研究,则需要对这些方程进行简化处理。通过限制各个变量的数值大小或假设它们同特定的工作状态偏移很小,我们可以对无人机的运动方程进行线性化。随着非线性系统理论的发展,线性化的方法也不断推陈出新,也各有特色,但从实用角度出发,小扰动线性化方法仍可成为是最简单和最有效的。一般 而 言 ,小扰动线性化是相对于某基准工作点进行的,即把系统的运动分解为基准运动和扰动运动。如果扰动运动相对于基准运动而言很小,则称系统的工作为基准工作点附近的小扰动工作方式。对于非线性系统的这种小扰动工作方式,我们可以对其运动方程在工作点附近进行泰勒展开,忽略偏差量的二次及更高次项,再减去基准工作点处的运动方程,即可得到线性化的小扰动增量方程。当我们将无人机的定常直线无侧滑飞行作为基准运动,在小扰动假设下把无人机运动方程线性化之后,再加上本章一开始所提到的几点假设,就可以使线性化运动方程分离为纵向和横侧向两组彼此独立的常系数线性方程。因事实上,即使基准运动是非定常的,只要运动参数变化不是很剧烈,在一段时间内我们仍可近似认为这些系数是常数,这种处理方法称之为系数冻结法。 无人机运动方程的状态空间表达式 根据前面所介绍到的小扰动线性化方法,以无人机的恒速、定高、直线和无侧滑的飞行作为基准运动,即可得到无人机纵向与横侧向运动的线性化方程式,经适当整理后我们就可以得到其运动方程的状态空间表达式。己知状态方程的表达式为,则对于纵向运动而言: 对于横侧向向运动而言: 于是,无人机纵向运动与横侧向运动的状态方程就分别如式(2.32)和式(2.33)所示: 上面所得到的无人机线性化状态方程可以作为我们进行控制器设计和仿真的基础,本文所做的一些仿真研究都是在此基础上建立起来的。针对上述的状态方程,我们还有必要补充以下几点:(a)状态方程前的各个系数均有明确的量纲,其具体计算公式都比较繁琐,可参见文 献Ii 或文献31,故不在本文中列出。(b)由子我们所考虑的基准运动是对称运动,所以横侧向变量的偏差量就等于该变量 本身 ,因此可以不必使用前置符号Aa (c)线性化状态方程必须满足一定的理想条件。一般来说,这些线性化方程只适用于 对称直线飞行的理想条件附近。对于大角度机动飞行而言则必须沿用完整的非线 性方程,并且不能忽略纵向通道与横侧向通道之f-Hl的祸合作用。2.5 本章小结 在本章中 我们重点讨论了前苏联坐标体制下无人机空间运动的表示以及无人机十二阶非线性微分方程组的建立,并利用小扰动线性化方法对其进行了线性化处理,从而得到了无人机纵向与横侧向运动方程式的状态空间表达式,为后面的飞行控制系统的设计与仿真奠定了基础,最后还给出了英美体制下无人机T-T体系的十二阶非线性微分方程组。这里,我们要指出的是,不管是前苏联体制还是英美体制,都只是对相同模型的不同表述方式,其具体差异主要体现在所定义坐标系以及各参数符号的不同,这两种体制间的相互转换可参见文献171。另外,在附录B中我们还详细给出了这两种坐标体制下的参数对照表。 3控制系统理论基础 3.1引言 PID 控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性强以及可靠性高等特点,在实际的控制系统中得到了较为广泛的应用。但是随着工业生产的发展,控制系统变得越来越复杂、不确定因素也日益增多,同时对相应的控制指标提出了更高的要求,采用常规的PID控制技术已不能达到理想的控制效果。PID 控制中一个关键的问题便是PID参数的整定。但是在实际的应用中,许多被控对象机理复杂,具有高度非线性、时变不确定性和纯滞后等特点。在噪声、负载扰动等因素的影响下,被控对象的参数甚至模型结构均会随时间和周围环境的变化而变化。这就要求在我们在PID控制中,不仅要使其PID参数的整定不依赖于对象的数学模型,而且要能够实现在线调整,以满足实时控制的要求。智能控制 (IntelligentC ontrol)是一门新兴的理论和技术,它是一门交叉学科,是自动控制、运筹学和人工智能的结合物。智能控制这一概念最早出现于六十年代,美籍华裔科学家傅京孙教授较早对此进行了研究,此后人们开始从不同的角度模仿人的智能去解决常规控制方法所无法解决的问题,智能控制得到了较为迅速的发展。智能控制所研究的内容是很广泛的,通常包括基于知识推理专家控制、基于规则的自学习控制、基于联结机制的神经网络控制、基于模糊逻辑的智能控制和仿人智能控制等。这些智能控制方法与传统的PID控制策略相结合,从而派生出了各种新型的智能PID控制器,形成了庞大的PID家族,其中很多算法都大大改进了常规PID控制器的性能。与常规PID控制相比,智能PID控制通常具有不依赖系统精确数学模型的特点,而且对系统的参数变化也具有较强的鲁棒性。3.2 常规PID控制 常规的PID控制由比例单元(P)、积分单元(1)和微分单元(D)三部分组成。其输入e(t)与输出u(t)的关系为: 式中K。为比例增益,T为积分时间常数,Tt为微分时间常数,U(t)为控制量!e(t)为被控量y(t)和设定值r(1)的偏差,e(t)= r (t)-Y (t).随着计算机技术的飞速发展,数字式PID控制己经逐步取代了传统的模拟PID控制,它可以分为位置式PID和增量式PID两种,其表达形式分别如下所示: 以上两 式中的r均表示采样时间。比例 、积分和微分对系统的性能分别产生不同的影响,其具体作用如下所示: (1) 比例作用 PID 控制器的稳定性、超调量、响应速度等动态指标主要取决于比例系数的大小,由小到大变化时,系统的响应速度加快;系统的超调量由没有到有,由小变大;对于系统的稳定性来说,总体的趋势是由强到弱。为了兼顾系统的稳定性和动态性能,应取合适的比例系数。 (2)积分作用 积分调节与系统的稳态精度密切相关,加入积分能消除系统的稳态误差,提高系统的跟踪精度,但过大的积分作用会造成系统的超调。同时积分的引入会给系统带来相角滞后,从而产生超调甚至,引起积分的饱和作用,不利于系统的响应品质。 (3)微分作用 微分调节 的主要作用是克服大惯性时间常数的影响,引入微分相当子给系统引入一个动态阻尼,增大T,能够减小系统的超调量,但系统的调节时间会因此而变大。在复杂的实际环境中,山于环境噪声的污染,微分往往会放大系统的噪声,使得系统对抗干扰能力减弱。 从上述的分析可以看到,在PID参数的整定过程中,往往会遇到系统的稳定性和系统的稳态、动态性能之间的矛盾,最后只能在三者之间取一个折衷,很难满足高精度、高性能的要求。 3.3 PID控制器参数的常用整定方法目前,PID控制器参数的常用整定方法大体上可以分为两大类:第一类以Ziegler一Niehols方法(简称ZN方法)与Chien一Homes一Reswick方法(简称CHR方法)为代表,这些方法首先给出系统的闭环时域响应(阶跃响应)或频域响应,然后将系统近似成一阶带延时的系统,通过从图中获取需要的数据,再根据所给出的经验公式整定PID控制器的参数;另一类方法则没有经验公式,而是根据各种性能指标及其数学定义,通过纯粹的数学运算来获得PID控制器参数。这些方法主要包括:改进的Ziegle- Nichols方法、预测性PI控制器算法、相角,幅值裕度设定方法、最优PID控制器设计方法和基于灵敏度的设计方法等等。下面介绍几种常用的PID控制器参数整定的方法。3.3.1 zieger-Niehols整定方法该整定方法基于稳定性的分析。它主要根据对象特性或对象在临界振荡时响应曲线的参数确定所需的控制器参数。(1)反应曲线法该方法适用于对象传函可近似为的场合。先输入阶跃信号,测得输出曲线并估计对象参数,然后根据所使用的控制器按表3-1得到控制器的参数。 表3-1反应曲线法PID参数整定表(2)临界比例度法该方法适用于己知对象传函的场合。首先将调节系统中调节器置成比例状态,然后把比例度 (即的倒数)由大逐渐变小,直至出现等幅振荡,此时比例度称临界比例度,相应的振荡周期称临界振荡周期,PID参数整定的经验公式如表3.2所示。采用临界比例度法时,系统需得到临界振荡的条件是系统必须是3阶或3阶以上的。 表3-2 临界比例度法PID参数整定表 3.3.2 衰减曲线整定法 该方法是根据衰减频率特性来整定PID控制器参数的。先将闭环系统中的调节器置于纯比例作用,从大到小逐渐调节比例度,加扰动做调节系统的实验直至出现4:1的衰减振荡,此时的比例度记为,振荡周期记为,其中为到的时间(如图3-1所示),上升时间记为。具体得参数整定规则如表3-3所 图3-1 衰减响应曲线 表3-3衰减曲线法PID参数整定表3.3.3基于相角裕度的整定方法Astrom和Hagglulld提出了一种由幅值与相角裕度设定来设计PID控制器的算法,该算法的基本思想是通过设计PID控制器将系统频域响应中的一个点移动到另一个指定的点处。例如,将其中一个点移动到只有幅值为l且相位为预先指定的值处,从而迫使闭环系统具有期望的相角裕度。假设在对象模j型G(s)和控制器模型Gc(s)上的点可以表示成: 且期望的频域响应为,则可以看出: (3.5) 下面我们只讨论基于相角裕度设定的PID参数整定法。 首先,我们定义,且,其中为期望的相角裕度,这样就可以得到: (3.6)式中为指定的频率点。可以看出,该方程有无穷多组解。为简单起见,我们可以假定有某种线性关系,记作,这样我们就可以得出一族解为:,且的值则可以通过下式得到: 在本文后面的飞行控制律的设计中,我们将采用这种方法对常规PID参数进行整定,并以此作为智能PID控制器参数初始值的依据。4无人机纵向系统控制律的设计与仿真 无人机是通过自动控制系统与遥控遥测系统来共同实现任务控制的,这是它区别于有人驾驶飞机的主要特征。其中控制系统与遥控遥测系统的核心是飞行控制系统和通讯系统。一般来将讲,一个完整的无人机系统的飞控系统有机载体部分和地面部分之分,其间由无线电上下行通道担任机载与地面站的计算机通信。在本文中,如果没有特殊说明,我们所提到的无人机的飞行控制系统均指的是它的机载部分,或者更具体的说主要是针对它的自动驾驶仪部分。4.1无人机飞控系统基本原理概述4.1.1飞控系统的硬件结构从硬件上来看,无人机的飞控系统是由飞控计算机、测定装置(传感器)及伺服装置三部分组成的。飞控计算机是整个无人机机载飞控系统的核心设备,它的主要功能是根据输入的传感器信息、存储的相关状态和数据以及无线电测控终端发过来的上行遥控指令与数据,经判断、运算和处理之后,输出指令给伺服执行机构即舵机系统,控制操纵无人机的舵面、发动机的风门和前轮,以控制无人机的飞行或地面滑跑。 测定装置则主要负责测量无人机相关的状态信息,一般无人机的测量装置包括三轴向角速度陀螺、垂直陀螺、磁航向传感器、气压高度和高度差传感器、真实空速传感器、攻角和偏航角传感器、发动机转速传感器等。 舵回路(伺服系统)是以舵机为执行元件的、由若干部件组成的随动系统,它是影响飞控系统带宽的主要环节。舵回路按照指令模型装置或敏感元件输出的电信号来操纵舵面,实现无人机角运动或航迹运动的自动稳定和控制。在舵回路中常用的反馈有位置反馈(硬反馈)、速度反馈(软反馈)和均衡反馈(弹性反馈)三种。它们分别构成了硬反馈式、软反馈式和弹性反馈式这三种常见的舵回路形式。在本文的飞控系统设计和仿真中,我们均采用了硬反馈式的舵回路,其传递函数为: (4-1) 式中和分别称为静态增益和时间常数。可见,硬反馈式的舵回路的传函可近似为一个惯性环节。4.1.2飞控系统设计的基本思路常规无人机的飞行控制系统是一个多通道控制系统,即多输入多输出的控制系统。其输入量为传感器所采集到的无人机状态值,输出量为无人机状态方程的控制变量舵值和发动机推力。通常而言,我们要想控制飞机的运动必须首先考虑控制它的角运动,使其姿态发生变化,然后才能使它的重心轨迹发生相应的变化。因此,我们把以姿态角信号反馈为基础构成的飞行姿态稳定和控制回路(即内回路)称之为飞