基于DDS的正弦波信号发生器设计毕业论文(设计).doc
毕业论文(设计)题目基于DDS的正弦波信号发生器设计学生姓名学号指导教师系部名称专业班级完成时间摘 要DDS正弦波信号发生器能对输出电平进行调节,输出各种波形,把信号发生器的频率稳定度、准确度提高到与基准频率相同的水平,并且可以在很宽的频率范围内进行精细的频率调节。在跳频技术、无线电通信技术方面有着重要作用。传统的正弦波信号发生器大多是基于模拟电子技术设计制作的,这种信号源制作简单,成本低廉,但是它的缺点也很多,比如不便于存储,频率稳定度差,失真度高等。DDS是以全数字技术,从相位概念出发直接合成所需波形的一种新的合成原理。本设计采用DDS和单片机技术相结合,以DDS芯片AD9850为核心设计了一种幅度、相位、频率都可调节的正弦波信号发生器,它不仅能克服传统的正弦波信号发生器的缺点,而且由模拟乘法器产生调幅电路、采用数字键控的方法实现二进制PSK、ASK信号,且频带较宽、频率稳定度高,波形良好。设计目标是用DDS芯片AD9850,产生0kHz2mHz范围、频率步进1KHz可调、输出峰峰值在6 V的正弦波基本信号。以AVR单片机Atmegal6为控制核心,结合FPGA辅助逻辑控制电路,对实现的正弦波基本信号进行幅度、频率、相位调制和调制度及频偏的程序控制。以论文总体分为硬件设计部分,软件设计部分,仿真与测试部分。并论文中详细进行介绍。关键词:数字频率合成;FPGA;AVR单片机;信号调制;AD9850;AbstractThe design use DDS chip AD9850 to generate sine wave,whose frequency is from 0 Hz to 2 MHz,stepper is 1KHz and peak value is around 6 VIt use AVR MCU Atmega 16 as the control unitMCU combine with assistant logic control circuit with FPGA which generate sin modulated signal of 1 kHz frequency and binary baseband serialsignal to control the peak,frequency,phase,modulate coeficient and frequency steppe r of sine wave with programIt has the virtue of wide baseband,high precision ,stabilization,low cost and fme interfaceTh e production can use as realia and scientific research instnmaentKey words:DDS;FPGA;AVR MCU;signal modulate目 录摘 要IAbstractII第一章 概 述1第二章 方案论证1 2.1主控制器2 2.2正弦信号产生2 2.3输出电压放大2 2.4 FM调频电路32.5 AM调幅电路32.6产生二进制PSK、ASK信号3第三章 详细软硬件设计3第四章 硬件模块设计54.1 SPCE061A简介54.1.1 综述54.1.2 性能64.1.3 结构概览64.1.4芯片的引脚排列和说明74.2 正弦信号产生模块94.2.1 AD9850芯片简介94.2.2 AD9850工作方式介绍114.2.3相位控制字的计算114.3 带负载输出144.3.1推挽放大器154.4正弦调制信号的产生164.5 AM调幅信号的产生174.6 ASK、PSK的产生184.6.1 ASK: 幅移键控ASK (Amplitude Shift Keying)184.6.2 PSK:数字相位调制(phase shift keying)184.7 LCD显示器224.7.1 概述234.7.2 基本特性234.7.3 模块接口说明234.7.4 控制器信号接口说明24第五章 软件设计26第六章 测试说明27参考文献29附录30致谢31 第一章 概 述l 1.1引言信号源作为一种信号产生的装置已经越来越受到人们的重视,它可以根据用户的要求,产生自己需要的波形,具有重复性好,实时性强等优点,已经逐步取代了传统的函数发生器。当今高性能的信号源均通过频率合成技术来实现,随着计算机、数字集成电路和微电子技术的发展,频率合成技术有了新的突破直接数字频率合成技术DDS(Direct Digital Synthesis) ,他是将先进的数字信号处理理论与方法导入到信号合成领域的一项新技术,它的出现为进一步提高信号的频率稳定度提供了新的解决方法。同时,随着微电子技术的迅速发展,尤其是单片机技术的发展,智能仪器也有了新的进展,功能更加完善,性能也更加可靠,智能程度也不断提高。本课题的目的就是依据DDS原理设计开发出一个能产生正弦波,且能产生幅度调制(AM)信号电路,产生模拟调制(FM)信号电路,产生二进制PSK,ASK信号电路。l 1.2 研究课题发展背景与过程DDS(Direct Digital Synthesis) 的概念首先由美国学者J . Tierncy ,C. M. Rader和B. Gold提出,它以全数字技术,从相位概念出发直接合成所需波形的一种新的合成原理。限于当时的技术和器件产,它的性能指标尚不能与已有的技术相比,故未受到重视。近一年间,随着微电子技术的迅速发展,直接数字频率合成器(Direct Digital Frequency Synthesis 简称DDS 或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的佼佼者。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。近几年超高速数字电路的发展以及对DDS的深入研究,DDS的最高工作频率以及噪声性能已接近并达到锁相频率合成器相当的水平。随着这种频率合成技术的发展,其已广泛应用于通讯、导航、雷达、遥控遥测、电子对抗以及现代化的仪器仪表工业等领域。随着微电子技术的飞速发展,目前高超性能优良的DDS 产品不断推出,主要有Qualcomm、AD、Sciteg 和Stanford 等公司单片电路(monolithic)。Qualcomm公司推出了DDS 系列Q2220、Q2230、Q2334、Q2240、Q2368,其中Q2368 的时钟频率为130MHz,分辨率为0.03Hz,杂散控制为-76dB,变频时间为0.1s;美国AD 公司也相继推出了他们的DDS 系列:AD9850、AD9851、可以实现线性调频的AD9852、两路正交输出的AD9854以及以DDS为核心的QPSK调制器AD9853、数字上变频器AD9856 和AD9857。AD公司的DDS系列产品以其较高的性能价格比,目前取得了极为广泛的应用。l 1.3基于DDS的正弦波信号发生器简本课题设计一个正弦信号发生器,使用凌阳公司的16位单片机SPCE061A作为中央控制器,结合DDS芯片AD9850,产生1kHz2MHz频率可调的正弦信号,正弦信号频率设定值可断电保存;使用宽频放大技术,在50负载电阻上使1kHz2MHz范围内的正弦信号输出电压幅度 =6V±1V;产生载波频率可设定的FM和AM信号;调制信号为1KHz的正弦波,调制信号的产生采用DDS技术,由CPLD和Flash ROM加上DAC进行直接数字合成;二进制基带序列码由CPLD产生,在100KHz固定载波频率下进行数字键控,产生ASK,PSK信号。系统采用全中文菜单操作方式,操作简单,快捷,且系统的精度和稳定性高.l 1.4 课题研究内容本课题主要对DDS正弦波信号发生器进行研究和设计,具体来说,包括以下内容:1) 对DDS正弦波信号发生器的设计原理进行研究与设计,并选择最佳设计方案。2) 对DDS正弦信号发生器的硬件部分进行研究与设计,用protel绘制电路原理图并调试各模块电路。3) 对DDS正弦波信号发生器的软件部分进行研究与设计,完成具体程序编辑,调试与测试。4) 对DDS正弦波信号发生器整体进行调试与测试。l 1.5 课题研究意义本课题研究有利于整个通信技术的发展,并在日常无线通信中有着重要的意义。第二章 方案论证根据题目要求,本系统主要由主控制器模块、正弦信号发生模块、输出电压放大模块、FM调频电路模块、AM调幅电路模块和人机界面模块构成。如图 2-1。图2-1 系统模块框图l 2.1主控制器方案一:采用通用的51单片机AT89S52作为主控制器,完成数据处理,DDS的频率输出控制,键盘的扫描及液晶显示器的显示控制等。由于51单片机内部的RAM和ROM都比较小,考虑到实现本系统需要大量的数据处理及液晶显示需占用大量的ROM资源等,用51单片机实现本系统就需外扩RAM和ROM,实现起来比较麻烦。而且本系统需要用A/D转换器采样调制信号实现调频信号的输出,使用51单片机就需外扩一片A/D转换芯片,实现也比较麻烦。而且基于整个系统的速度要求,51单片机也不能满足要求。 方案二:采用凌阳公司的16位单片机SPCE061A作为主控制器。由于SPCE061A内置有2K字的SRAM和32K字的内存FLASH,能满足本系统数据处理及液晶显示所需数据的存储要求CPU时钟频率高达49.152MHz,能满足速度要求;集成有7通道10位电压模数转换器ADC,可以满足系统采样调制信号的要求;一片凌阳SPCE061A单片机就可以完成整个系统的主要功能,基本不需要扩展其他器件,不仅体积小而且可靠性高。而且凌阳单片机具有C语言风格的汇编语言,有与标准C兼容的C语言,C语言函数可以与汇编函数互相调用,使其开发更加容易,实现整个系统更加简单。基于此,本系统采用方案二,利用凌阳的16位单片机SPCE061A作为主控制器。l 2.2正弦信号产生方案一:采用反馈型LC振荡原理,选择合适的电容、电感就能产生相应的正弦信号。此方案器件比较简单,但是难以达到高精度的程控调节,而且稳定度不高,故不采用。 方案二:采用DDS技术的基本原理。DDS技术是基于 Nyquist采样定理,将模拟信号进行采集,经量化后存入存储器中(查找表),通过CPLD或者FPGA进行寻址查表输出波形的数据,再经D/A 转换滤波即可恢复原波形。根据 Nyquist 采样定理知,要使信号能够恢复,必须满足采样频率大于被采样信号最高频率的2倍,否则将产生混叠,经D/A 不能恢复原信号。此方案产生的波形比较稳定,在高频输出时会产生失真,而且电路比较复杂,故不采用。 方案三:直接采用DDS集成芯片。AD9850是AD公司生产的DDS芯片,带并行和串行加载方式,AD9850 内含可编程DDS系统和高速比较器,能实现全数字编程控制的频率合成。 由于DDS集成芯片能达到要求,而且节省硬件电路,程控调节能够方便实现,本设计采用方案三,作为1K10MHz正弦信号发生。l 2.3输出电压放大方案一:采用高频三极管做功率放大。选择恰当的电阻和电容来实现符合题目要求的放大倍数。但是使用三极管放大时,信号放大的稳定性不高,很难满足题目的要求。故不采用。 方案二:采用宽频运算放大器做前级电压放大,AD8056可以达到300M的带宽,而且频率稳定性好。在后级加上互补对称的推挽式输出电路做电流放大作用。 所以在本设计中采用了方案二。l 2.4 FM调频电路 方案一:使用变容二极管直接调频。变容二极管是根据PN结的结电容随反向电压改变而变化的原理设计的一种二极管。加反向偏压时,变容二极管呈现一个较大的结电容。变容二极管要并接在产生中心频率振荡的选频网络的两端,并加上调制信号,使中心频率随调制信号的幅值的改变而改变,从而达到调频作用。但是本方案会使电路产生的频偏不稳定,容易产生中心频率偏移。 方案二:采用锁相环进行调制,采用锁相环路调频,能够达到中心频率高度稳定的调频信号。由于锁相环能跟踪并锁定中心频率。从而使中心频率有足够高的稳定度。而调制信号就加在VCO(压控振荡器)的输入端,从而使中心频率随调制信号的幅值的改变而改变。如图2-2。本方案比较直观,而且中心频率和频偏都比较准确,但是电路复杂,故不采用。图2-2 锁相环框图方案三:凌阳的单片机芯片SPCE061A内部集成有10位ADC。可先将调制信号离散化,当采集完一个周期(1ms)的数据后,计算出每相邻两个抽样点的偏移量,这样就可以根据偏移量控制改变DDS的输出频率,从而达到调频效果,而且硬件设计简单4。 本设计使用方案三。l 2.5 AM调幅电路方案一:采用单二极管开关状态调幅电路,使二极管近似处于一种理想的开关状态下,在两个不同频率电压作用下进行频率交换。 方案二:采用二极管平衡调幅电路,它是利用二极管的开关状态和平衡抵消的措施,经调幅后通过带通滤波器就可以得到调幅信号。前面两种方案电路实现比较复杂,而且由于采用分立元件,稳定性比较差,调试困难。 方案三:采用模拟乘法器调幅电路,它是一种完成两个模拟信号相乘作用的电路,起到频率搬移的作用,若采用专门的模拟乘法器芯片,电路实现简单,稳定性比较好,功能实现容易,符合题目要求。 基于此,本系统采用方案三,选用集成模拟乘法器MC1496实现AM的模拟调幅。l 2.6产生二进制PSK、ASK信号方案一:直接采用DDS实现ASK和PSK,用程序直接控制DDS输出二进制PSK和ASK信号,根据码序列中的0或1直接控制DDS的相移,便可以实现PSK调制功能,而控制DDS开和关即可实现ASK调制。本方案直接用软件来实现产生二进制ASK,PSK信号,基本不用硬件电路,比较方便,但经过试验,输出的信号不稳定。故不采用。 方案二:采用数字键控的方法来实现,采用模拟开关,利用基带信号控制模拟开关的选通或关闭来实现ASK调制。实现PSK调制时,把100K的载波信号分接成两路,其中一路接增益为-1的运放电路,将载波信号移相180°。01基带序列码由CPLD产生。本方案硬件设计也比较简单,输出的信号比较稳定,各种指标符合题目要求。 基于此本系统采用了方案二实现产生二进制PSK,ASK信号。l 2.7系统整体框架根据上面的论证,本系统以凌阳的16位单片机SPCE061A为核心,配合DDS专用芯片AD9850,完成正弦信号的产生,并辅以各个功能模块完成题目的设计要求。 系统的总体框图如图 2-3,硬件连接图如图 2-4。图2-3 系统设计框图图2-4 系统硬件连接图第三章 硬件模块设计l 3.1正弦信号发生模块正弦信号产生模块的主要部分是AD9850。3.1.1 AD9850芯片简介AD9850 是AD 公司采用先进的DDS 技术于1996 年推出的高集成度DDS频率合成器,它内部包括可编程DDS系统、高性能DAC及高速比较器,能实现全数字编程控制的频率合成器和时钟发生器。接上精密时钟源,AD9850 可产生一个频谱纯净、频率和相位都可编程控制的模拟正弦波输出。此正弦波可直接用作频率信号源或转换成方波用作时钟输出。AD9850引脚图如表3-1:管脚名称管脚编号类型描述IOA15:84639输入输出IOA15:8:双向IO端口IOA7:03427输入输出IOA7:0:通过编程,可设置成唤醒管脚IOA6:0:与ADC输入公用IOB15:11IOB10IOB9IOB8IOB7IOB6IOB5IOB4IOB3IOB2IOB1IOB050545758596061626364656667输入输出输入输出输入输出输入输出输入输出输入输出输入输出输入输出输入输出输入输出输入输出IOB15:11:双向IO端口。IOB100除用作普通的IO端口,还可以作为:IOB10:通用异步串行数据发送管脚TxIOB9:TimerB脉宽调制输出管脚BPWMOIOB8: TimerA脉宽调制输出管脚APWMOIOB7:通用异步串行数据接收管脚RxIOB6:双向IO端口IOB5:外部中断源EXT2的反馈管脚IOB4:外部中断源EXT1的反馈管脚IOB3:外部中断源EXT2IOB2:外部中断源EXT1IOB1:串行接口的数据传送管脚IOB0:串行接口的时钟信号DAC112输出DAC1数据输出管脚DAC212输出DAC2数据输出管脚X32I2输入32768Hz晶振输入管脚X32O1输出32768Hz晶振输出管脚VCOIN70输入PLL的RC滤波器连接管脚AGC16输入AGC的控制管脚MICN19输入麦克风负向输入管脚MICP21输入麦克风正向输入管脚V2VREF14输出电压源2.0V产生5mA的驱动电流,可用作外部ADC 输入线,通道的最高参考输入电压,不可作为电压源使用MICOUT18输出麦克风1阶放大器输出管脚,管脚外接电阻决定AGC增益倍数OPI17输入麦克风2阶放大器输入管脚VEXTREF23输入ADC 输入线,通道的最高参考输入电压管脚VMIC25输出麦克风电源VADREF22输出AD参考电压(由内部ADC产生)VDD5,69输入逻辑电源的正向电压VSS10,26,71输入逻辑电源和IO的参考地VDDIO37,38,56输入IO端口的正向电压管脚VSSIO35,36,48输入IO端口的参考地AVDD24输入模拟电路(A/D、D/A和2V稳压源)正向电压表3-1 SPCE061A引脚功能 AD9850芯片管脚功能图如图3-1:图3-1 AD9850芯片管脚功能图AD9850组成框图如图3-2:图3-2 AD9850组成框图3.1.2 AD9850工作方式介绍 AD9850 的控制字有40 位,其中32 位是频率控制位,5 位是相位控制位,1 位是电源休眠控制位,2 位是工作方式选择控制位。在应用中,工作方式选择位设为00 ,因为01 ,10 ,11 已经预留作为工厂测试用。相位控制位按增量180°,90°,45°,22. 5°,11. 25°或这些组合来调整。频率控制位可通过下式计算得到: = ( ×W) / 2 (3-1)其中: 要输出的频率值; 为参考时钟频率;W 为相应的十进制频率控制字, 然后转换为十六进制即可。3.1.3 相位控制字的计算AD9850中有5 bit用于相位控制。因此,相位控制的精度为360°/2=11.25°,用二进制表示为00001,根据实际需要,设置不同的相位控制字就可以实现精确的相位控制。表3-2给出了相移与相位控制字之间的对应关系。 相移/(°) 相位控制字 0 0000022.5 0001045.0 0010067.5 0011090.0 01000112.5 01010135.0 01100157.5 01110180.0 10000202.5 10010225.0 10100247.5 10110270.0 11000292.5 11010315.0 11100337.5 11110表3-2 相移与相位控制字之间的关系AD9850 有串行和并行两种控制命令字写入方式。图3-3是控制字并行输入的时序图。并行输入方式下,在W_CLK的上升沿装入8位数据,并把指针指向下一个输入寄存器,连续5个W_CLK上升沿后,W_CLK的边沿不再起作用,直到复位信号或FQ_UD上升沿把地址指针复位到第一个寄存器。在FQ_UD的上升沿把40位数据从输入寄存器装入到频率/相位数据寄存器(更新DDS输出频率和相位)。串行输入方式下,在W_CLK的上升沿把一位数据串行移入,当移动40位后,FQ_UD的上升沿即可更新输出频率和相位。但是要注意的是,此时数据输入端的三个管脚不可悬空,其中D0 ,D1 脚接高电平,D2 脚要接地。图3-4是相应的控制字串行输入的控制时序图图3-3 控制字并行输入的时序图图3-4 控制字串行输入的时序图图3-5 AD9850结构因为要考虑到FM调频,本系统使AD9850工作于并行方式接线,以提高频率的切换速度。从而达到调制1K正弦波的要求。参考时钟使用42M晶振,设计低通滤波器时,就要去掉42M的高频干扰。DDS输出的带宽比较高,低通滤波器要采用LC做成7阶切贝雪夫低通滤波。其连接图如图 3-6。图3-6 AD9850 连接图而且,应在电路中使用一个截止频率为10MHz 的7 阶切比雪夫滤波器, 其电路图如图 3-7所示。在滤波器的设计过程中,能否准确实现高Q值的电感,直接影响着滤波器的最终性能。图3-7 切贝雪夫低通滤波器l 3.2输出电压放大模块要达到6V±1V的带负载输出,我们先使用宽频运放AD8056做前级放大,为了达到合适的电压增益,我们使用了两级放大切换,改变放大的级数以便适应增益要求;经运放输出的电压电流较弱,带负载能力不强,所以要在运放的后级加上一级推挽输出,提高输出电流。在推挽输出端接上了50电阻,输出幅度能达到题目的要求。图3-8 放大电路3.2.1推挽放大器在功率放大器电路中大量采用推挽放大器电路,这种电路中用两只三极管构成一级放大器电路,两只三极管分别放大输入信号的正半周和负半周,即用一只三极管放大信号的正半周,用另一只三极管放大信号的负半周,两只三极管输出的半周信号在放大器负载上合并后得到一个完整周期的输出信号。 推挽放大器电路中,一只三极管工作在导通、放大状态时,另一只三极管处于截止状态,当输入信号变化到另一个半周后,原先导通、放大的三极管进入截止,而原先截止的三极管进入导通、放大状态,两只三极管在不断地交替导通放大和截止变化,所以称为推挽放大器。图3-9 推挽输出l 3.3 FM调制电路模块1K正弦调制信号的产生采用DDS技术。 DDS技术采用全数字技术实现频率合成,和其它一般的频率合成技术相比,有一些突出的优点和独特的性能:DDS 在相对带宽、频率转换时间、频率分辨率、相位连续性、正交输出以及集成化等一系列性能指标方面远远超过了传统频率合成技术所能达到的水平,为本系统实现AM,FM调制提供了稳定的正弦调制信号。DDS的实现原理如图3-10:图3-10 DDS技术的实现DDS 技术的实现依赖于高速、高性能的数字器件。可编程逻辑器件以其速度高、规模大、可编程,以及有强大EDA 软件支持等特性,十分适合实现频率的合成。 由于本系统要求产生1KHz的正弦调制信号,失真度要求要小,而且稳定性要好,DDS 的失真度除受D/A 转换器本身的噪声影响外,还与存储深度M和D/A 字长有密切关系,设q 为均匀量化间隔,其失真度近似数学关系为: =*100% (3-3)本系统的量化级为256(8 位DAC),经计算其失真度约为5.676%,可以满足设计要求。 系统采用Altera 公司的CPLD 器件EPM7128,其最高工作频率为120MHz,典型可用门5000 门。EPM7128SLC84-15是Altera公司推出的MAX7000S 系列的CPLD(Complex Programmable Logic Device);采用CMOS EPROM工艺,传输延迟仅为5ns;内部具有丰富的资源-128个触发器、2500个用户可编程门;而且具有68个用户可编程的IO口,为系统定义输入、输出和双向口提供了极大的方便;为了比较适合混合电压系统,通过配置,输入引脚可以兼容3.3V/5V逻辑电平,输出可以配置为3.3V/5V逻辑电平输出。EPM7128同时还提供了JTAG接口,可进行ISP编程,极大地方便了用户。 DDS设计电路产生的波形存在高次谐波,须进行低通滤波使波形平滑,为使通带内的起伏最小,我们采用了巴特沃斯二阶低通滤波器,如图 3-11。巴特沃思二阶低通滤波器的截止频率为fc = 1/ 2RC 。由于只需产生1KHz的正弦信号,本系统设计的滤波器的截至频率为2KHz,选取C=1uf,经计算取R=80。 图3-11 二阶巴特沃思滤波器l 3.4 AM调幅电路模块调幅(AM)是指用调制信号f(t)去控制载波c(t)的振幅,使已调波的包络按照f(t)的规律线性变化的过程,这种调制在中短波广播及通信中获得广泛应用。假设调制信号为f(t),载波为 c(t)=cos(t+) (3-4)则已调信号可以写为 (t)= + f(t)cost=m(t)cost (3-5)式中:为未调载波的振幅,为载波频率,为载波起始相位。在AM 调幅中, 输出已调信号的包络与输入调制信号成正比,基于此我们采用控制输入调制信号的幅度来改变调制度ma, 使其可在10%100%之间程控调节,步进量10%。本系统中采用的是模拟乘法器 MC1496 来实现调制器的设计, MC1496 中包含了由带双电流源的标准差动放大器驱动的四个高位放大器输出集电极交叉耦合,产生了两个输入电压的全波平衡调制乘积现象,也就是说输出信号是一个常数乘以两个输入信号的乘积, 即为 = K。 使用模拟乘法器比较容易实现调幅,调制质量高。电路如图 3-12。图3-12 MC1496电路图l 3.5 ASK、PSK的产生3.5.1 ASK: 幅移键控ASKASK指的是振幅键控方式。这种调制方式是根据信号的不同,调节正弦波的幅度14。 幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关闭,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。 ASK信号的表达式为: (3-6)幅移键控法(ASK)的载波幅度是随着调制信号而变化的, 其最简单的形式是,载波在二进制调制信号控制下通断,此时又可称作开关键控法(OOK)。多电平MASK调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。3.5.2 PSK:数字相位调制又称相移键控,利用不同的载波初始相位来表示数字信号的“0”和“1”,利用载波振荡相位的变化来传送数字信息,通常又把他们分为绝对相移(2PSK)和相对相移(2DPSK)两种。可以实现用高频载波对频率较低的数字基带信号的调制,使信号更适合在特定的信道中传输。二进制相移键控是用二进制数字信号去控制载波的相位,使已调等幅、恒定载波的载波相位与待发数字信号相对应;只有两种对应状态,例如载波相位以0相与相分别代表“1”(传号)和“0”(空号)。如果数字基带信号g(t)是幅度为1、宽度为Tb的矩形脉冲,则2PSK信号可表示为 (3-7)或 (3-8)ASK、PSK采用数字键控的产生方法,图 3-13和图 3-14分别是他们实现的原理框图。图3-13 ASK信号调制器原理框图图3-14 PSK信号调制器原理框图选用模拟开关CD4052来实现数字键控。CD4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。幅值为4.520V的数字信号可控制峰峰值至20V的模拟信号。例如,若VDD=+5V,VSS=0,VEE=-13.5V,则05V的数字信号可控制-13.54.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。其使用真值表如表3-3所示:表3-3INHIBITBA0000x,0y0011x,1y0102x,2y0113x,3y1XXNone应用时可以通过单片机对A/B的控制来选择输入哪一路,例如:需要从4路输入中选择第二路输入,假设使用的是Y组,那么单片机只需要分别给A和B送1和0即可选中该路,然后进行相应的处理, 注意:第6脚为使能脚,只有为0时,才会有通道被选中输出。图3-15 CD4052芯片管脚图引脚号符号功能1 2 4 5IN/OUTY通道输入/输出端11 12 14 15IN/OUTX通道输入/输出端9 10A B地址端3IN/OUTY公共输出/输入端13IN/OUTX公共输出/输入端6INH禁止端7VEE模拟信号接地端8VSS数字信号接地端16VDD电源+表3-4 引脚功能说明要实现PSK还要增加一级放大增益为-1的运算放大电路,使载波信号产生一路的180°相移。 ASK和PSK的数字序列由CPLD产生。图 4-16 ASK 电路图图3-17 PSK电路图l 3.6 LCD显示器本设计中采用了TG12864A 液晶显示器,该显示器是128×64点阵式液晶,其结构框图见图3-18。图3-18 TG12864A 液晶显示器结构图带中文字库的128X64 是一种具有4 位/8 位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16 点汉字,和128个16*8点ASCII字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16 点阵的汉字,也可完成图形显示,低电压低功耗是其又一显著特点。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。3.7.1 基本特性(1) 低电源电压(VDD:+3.0-+5.5V)(2) 显示分辨率:128×64点 (3) 内置汉字字库,提供8192个16×16点阵汉字(简繁体可选) (4) 内置 128个16×8点阵字符 (5) 2MHZ 时钟频率 (6) 显示方式:STN、半透、正显(7) 驱动方式:1/32DUTY,1/5BIAS (8) 视角方向:6点 (9) 背光方式:侧部高亮白色LED,功耗仅为普通LED 的1/51/10 (10) 通讯方式:串行、并选可选(11) 内置DC-DC 转换电路,无需外加负压 (12) 无需片选信号,简化软件设计(13) 工作温度: 0 - +55 ,存储温度: -20 - +603.7.2 模块接口说明管脚号 管脚名称 电平 管脚功能描述1 VSS 0V 电源地2 VCC 3.0+5V 电源正3 V0 - 对比度(亮度)调整4 RS(CS) H/L RS=“H”,表示DB7DB0 为显示数据RS=“L”,表示DB7DB0 为显示指令数据5 R/W(SID) H/L R/W=“H”,E=“H”,数据被读到DB7DB0R/W=“L”,E=“HL”, DB7DB0 的数据被写到IR 或DR6 E(SCLK) H/L 使能信号7 DB0 H/L 三态数据线8 DB1 H/L 三态数据线9 DB2 H/L 三态数据线10 DB3 H/L 三态数据线11 DB4