基于80C31单片机实现的大屏幕显示系统的学习设计毕业论文.doc
-
资源ID:4015825
资源大小:1.43MB
全文页数:39页
- 资源格式: DOC
下载积分:8金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
基于80C31单片机实现的大屏幕显示系统的学习设计毕业论文.doc
目 录 第一章 绪论1第一节 什么是LED显示屏1第二节 LED显示屏的广泛应用1第三节 LED显示屏的发展1第四节 LED显示屏的特点2第五节 LED显示屏的分类2第六节 LED显示屏发展趋势3第七节 小结4第二章 方案论证5第三章 硬件设计部分7第一节 系统的工作原理7第二节 单片机外部扩展电路8第三节 数据输出电路19第四节 时钟脉冲电路21第五节 移位寄存电路22第六节 显示电路25第四章 软件设计部分26第一节 串行通讯26第二节 串行口工作方式26第三节 波特率的设置26第四节 编程思想27结束语29致 谢30参考文献31附录A 流程图及程序32附录B 电路原理图38第一章 绪论第一节 什么是LED显示屏LED电子显示屏是由几万-几十万个半导体发光二极管像素点均匀排列组成。利用不同的材料可以制造不同色彩的LED像素点。目前应用最广的是红色、绿色、黄色。而蓝色和纯绿色LED的开发已经达到了实用阶段。LED显示屏可以显示变化的数字、文字、图形图像;不仅可以用于室内环境还可以用于室外环境,具有投影仪、电视墙、液晶显示屏无法比拟的优点。第二节 LED显示屏的广泛应用信息化社会的到来,促进了现代信息显示技术的发展,形成了CRT、LCD、PDP、LED、EL、DLP等系列的信息显示产品,纵观各类显示产品,各有其所长和适宜的市场应用需求。随着LED材料技术和工艺的提升,LED显示屏( led panel )以突出的优势成为平板显示的主流产品之一,是集光电子技术、微电子技术、计算机技术、信息处理技术于一体的高技术产品,他是通过一定的控制方式,用于显示文字、图形、图像、动画、行情、视频、录像信号等各种信息的LED器件阵列组成的显示屏幕。以其独具一格的优势,成为信息传播的重要媒体,在社会经济的许多领域得到广泛应用,主要包括:(1)证券交易、金融信息显示(2)机场航班动态信息显示(3)港口、车站旅客引导信息显示(4)体育场馆信息显示。(5)道路交通信息显示(6)调度指挥中心信息显示(7)邮政、电信、商场购物中心等服务领域的业务宣传及信息显示(8)广告媒体新产品(9)演出和集会(10)展览会第三节 LED显示屏的发展随着大规模集成电路和计算机技术的高速发展,led得到了飞速发展,从93年至今,全国LED市场保持持续增长,国产LED显示屏的市场占有率近100%,国外同类产品基本没有市场。在2001年全国LED显示屏市场销售额中,LED显示屏专业委员会成员单位占80%,有16亿多。国内LED显示屏产品及市场发展迅速,厂家众多,但目前主导骨干企业群尚在形成之中,处于群雄逐鹿的时代。随着LED显示产品行业的竞争逐步变得有序,市场即将转入规模化、品牌化竞争,当逐步形成实力占据市场分额50%以上的三到五家企业时,显示屏市场将趋于成熟。 根据LED显示屏专业委员会的统计,2001年成员单位的出口额约为4亿元人民币,这是LED显示屏走向国际市场的良好迹象。国产LED显示屏走出国门加入国际市场将使LED产业得到大的提升。我国近年LED显示屏市场增长率如图所示 (单位:亿元人民币) 第四节 LED显示屏的特点LED之所以受到广泛重视而得到迅速发展,是与它本身所具有的优点分不开的。这些优点概括起来是:1) 发光亮度强,在可视距离内阳光直射屏幕表面时,显示内容清晰可见. 超级灰度控制 具有1024-4096级灰度控制,显示颜色16.7M以上,色彩清晰逼真,立体感强. 2) 2)静态扫描技术,采用静态锁存扫描方式,大功率驱动,充分保证发光亮度. 3) 3)自动亮度调节 具有自动亮度调节功能,可在不同亮度环境下获得最佳播放效果.4) 4)全面采用大规模集成电路,可靠性大大提高,便于调试维护. 5) 5)全天候工作,完全适应户外各种恶劣性环境,防腐,防水,防潮,防雷,抗震整体性能强、性价比高、显示性能好,像素筒可采用P10mm、P16mm等多种规格. 6) 6)先进的数字化视频处理,技术分布式扫描,BSV液晶拼接技术高清显示,模块化设计/恒流静态驱动,亮度自动调节,超高亮纯色象素,影像画面清晰、无抖动和重影,杜绝失真。视频、动画、图表、文字、图片等各种信息显示、联网显示、远程控制. 作为新一代的显示媒体,已广泛应用于各行各业。以其现代化、智能化的姿态用于企、事业单位形象宣传和公共场所信息显示,已成为不可或缺的显示窗口,成为信息传播的重要媒体。第五节 LED显示屏的分类一、按颜色基色可以分为:单基色显示屏:单一颜色(红色或绿色)。双基色显示屏:红和绿双基色,256级灰度、可以显示65536种颜色。全彩色显示屏:红、绿、蓝三基色,256级灰度的全彩色显示屏可以显示一千六百多万种颜色二、按显示器件分类:LED数码显示屏:显示器件为7段码数码管,适于制作时钟屏、利率屏等,显示数字的电子显示屏。LED点阵图文显示屏:显示器件是由许多均匀排列的发光二极管组成的点阵显示模块,适于播放文字、图像信息。三、按使用场合分类:室内显示屏:发光点较小,一般3mm-8mm,显示面积一般几至十几平方米。 室外显示屏:面积一般几十平方米至几百平方米,亮度高,可在阳光下工作,具有防风、防雨、防水功能。四、按发光点直径分类:室内屏:3mm、3.75mm、5mm、室外屏:10mm、12mm、16mm、19mm、21mm、26mm室外屏发光的基本单元为发光筒,发光筒的原理是将一组红、绿、蓝发光二极管封在一个塑料筒内共同发光增强亮度。尽管LED显示屏的种类很多,而且发展更迅速、更先进,但由于知识储备的限制,和个人能力有限,我选择单色显示屏作为这次设计的主要设计方案。第六节 LED显示屏发展趋势一、高亮度、全彩化蓝色及纯绿色LED产品自出现以来,成本逐年快速降低,已具备成熟的商业化条件。全彩色LED显示屏将是LED显示屏的重要发展方向。LED产品性能的提高,使全彩色显示屏的亮度、色彩、白平衡均达到比较理想的效果,完全可以满足户外全天候的环境条件要求,全彩色LED屏将会成为主流产品。全彩色LED显示屏的广泛应用会是LED显示屏产业发展的一个新的增长点。二、标准化、规范化材料、技术的成熟及市场价格的基本均衡之后,LED显示屏的标准化和规范化将成为LED显示屏发燕尾服的一个新趋势。在市场竞争条件下,产品质量,系统的可靠性等将成为主要的竞争因素,这就对LED显示屏的标准化和规范化有了较高要求,业内骨干企业已开始在企业实施ISO9000系列标准,行业规范和标准体系的形成,对产品的检测有了相对统一的认识和评判依据,待业的发展将趋于有序。三、产品结构多样化信息化社会的形成,LED显示的应用前景更为广阔。预计大型或超大型LED显示屏的主流产品局面将会发生改变,适合于服务行业特点和专业性要示诉小型LED显示会有较大提高,面向信息服务领域的LED显示屏产品门类和品种体系将更加丰富,部分潜在的市场需求和应用领域将会有所突破,如公共交通、停车场、餐饮、医院等综合服务方面的信息显示屏需求量将有更大的提高,大批量、小型化的标准系列LED显示屏在LED显示屏市场总量中将会占有多数份额。LED的发展前景广阔,目前正朝着更高亮度、更高耐气候性、更高的发光均匀性、更高的可靠性、全色化方向发展。第七节 小结现代信息社会中,作为人-机信息视觉传播媒体的显示产品和技术得到迅速发展,进入二十一世纪的显示技术将是平板显示的时代,LED显示作为平板显示的主要产品之一无疑会有更大的发展。813 第二章 方案论证 LED大屏幕显示从显示方式来分,可分为静态显示和动态显示两种。从它显示的方式来看有两种方案可以选择,下面通过对这两种方案的比较讨论,从而选择更为合适的方案进行设计。方案一:静态显示是由单片机一次输出显示后,就能保持该显示结果,直到下次送新的显示模型为止。这种显示每一个象素需要一套驱动电路,如果显示屏为n*m各象素屏,则需n*m套驱动电路;以8*8点阵为例,则需要64套驱动电路。之所以称之为静态显示,是由于显示屏中的各点相互独立,而且各点的显示情况已经确定,相应锁存器的输出将维持不便,直到显示另一种情况为止。也正因为如此,静态显示器的亮度都较高。这种显示方式接口,编程容易,管理也简单,且占用机时少,显示可靠,付出的代价是占用口线资源较多。但采用静态显示技术,画面稳定,无杂点,图像效果细腻、清晰;动画效果生动、多样;视频效果流畅、逼真高亮度,色彩鲜艳,视角大,寿命长(大于10万小时),稳定性高,响应速度快等特点方案二:动态显示采用多路复用技术,如果是p路复用的话,则每p个象素需一套驱动电路,n*m个象素仅需n*m/p套驱动电路。以大屏幕显示器为8*64点阵为例,可将大屏幕分成8个8*8点阵的LED显示块拼装而成。将8个块的行线相应的并接在一起,形成8路复用,经由p1口输出的行扫描信号进行驱动。8个块的列线分别经由各串入并出移位寄存器的输出进行驱动。采用此方式,在某一时刻,只让某一行的行选线处于选通状态,而其他各点的行选线处于关闭状态,列选线同样一列选通而其他关闭,这样就可选通一点亮,以此方式循环下去,就可以显示各点的显示情况,虽然这些点的现实情况是在不同时刻出现的,而且同一时刻只有一位显示,其他各位熄灭,但由于人眼视觉暂留现象,只要每点显示间隔足够短,则可造成多点同时亮的假象,达到显示目的。对动态显示而言,P愈大驱动电路就愈少,成本也就愈低,引线也大大减少,更有利于高密度显示屏的制造。但采用动态显示占用机时长,只要单片机不执行显示程序就立刻停止。且存在闪烁、抖动等缺点,况且较静态显示亮度较弱。由以上两个方案比较可知,当系统中LED数量较多时,采用动态显示的方法较为经济,但从设计要求来看,显示屏是192*576的超大屏,系统中LED的数量远远超过数百只,如果仍采用动态显示的方法,会使系统变得较为复杂,可靠性降低,且成本下降有限。且动态显示后的亮度不够使大屏幕不足够清晰,为此选用静态扫显示法。 从显示更新的方式来看,可分为动态扫描和静态扫描两种方式。因为此设计总体思路是将大屏幕划分为24块,每块24列,逐块刷新,而不是整个大屏幕的点阵同时显示,故不是静态扫描方式而是动态扫描方式,所以总的来说采用的是动态扫描,静态驱动方式对系统进行设计。13 第三章 硬件设计部分 本设计做的题目是大屏幕控制系统,它由上位机和下位机组成,本设计主要实现下位机的功能,由单片机以串行方式接收从计算机串行口232发送来的要显示的图形,并存储在片外RAM中。根据系统命令要求将显示内容送向大屏幕,即根据不同要求可以以不同的方式显示图象,逐行刷新、逐列刷新、隔行隔列刷新,也可以以图形方式如扇形,百叶窗形等等,这里我们选择实现大屏幕逐块刷新。系统大致分为单片机外部扩展电路,数据输出电路,时钟脉冲电路,移位寄存电路和显示五大部分。第一节 系统的工作原理系统将192*576大屏幕分为24块,每块24列。通过指令逐块刷新。若以8*8点阵为单位,将每一块分成24*3小块,以第一行为例,说明其工作原理:由于是8*8点阵屏设计,需要端口16个,可采用静态显示模式,用P0口控制行,P1口控制列,通过软件编程,即可实现汉字的显示,并可上移下移,左移,右移,动态流动显示。首先单片机以串行方式接受从串行口232发送来的图形文字点阵数据并存储在片外RAM 62256中,通过74LS138地址译码器对二个74HC573锁存器进行片选,锁存并输出24位数据,MCS-51系列单片机是美国Intel公司在1980年推出的8位单片 微型计算机 ,包含51和52两个子系列。51子系列的典型产品有8031,8051和8751三种机型 52子系列包括8032,8052二种主要机型。ATMEL89S51系列单片机,由于它的模块化设计为适应具体的应用提供了极大的灵活性,便于扩展功能,有效的提高了系统的经济性。AT89S51是一种低工耗、高性能的片内含有4KB快闪可编程/擦除只读存储器的八位CMOS微控制器,使用高密度、非易失存储编程器对程序存储器重复编程。依此原理,将24块逐块刷新达到最终显示目的。系统方框图如下: 单片机LED显示点阵 行驱动器电源图31 系统结构方框图第二节 单片机外部扩展电路ATMEL89S51系列单片机,由于它的模块化设计为适应具体的应用提供了极大的灵活性,便于扩展功能,有效的提高了系统的经济性。AT89S51是一种低工耗、高性能的片内含有4KB快闪可编程/擦除只读存储器的八位CMOS微控制器,使用高密度、非易失存储编程器对程序存储器重复编程。之所以我们没有选择带有片内ROM的单片机,是因为对于大屏幕系统来说,对程序存储器的容量要求很大,因为大屏幕的显示形式是多种多样的,变化无穷,这就需要较大的程序存储器来存储不同显示形式的各种程序,况且因为系统对数据的存储能力要求较高,使用带有片内ROM的单片机同样需要扩展外部数据存储器,并没有简单和方便很多,反而可能带来不便,所以本设计选择80C31。80C31单片机内部有128个字节RAM存储器,CPU对内部的RAM具有丰富的操作指令,但在用于实时数据采集和处理时,仅靠片内提供的128个字节的数据存储器是远远不够的,为此需扩展外部数据存储器,因为整个大屏幕是由十万多个点组成的,每个点占一个位,这就需要大约13K字节容量,所以在这里我们选用32K的62256RAM。一、 TSC 89C51单片机(一)概述9C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROMFalsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能 8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器89C2051是它的一种精简版本。89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案,从里面收货了很多。它包含了下面:Ø 8位CPU;Ø 振荡频率1.212MHZ;Ø 128个字节的片内数据存储器(片内RAM);Ø 21个专用寄存器;Ø 4KB的片内程序存储器(8031无); Ø 8位并行I/O口P0,P1,P2,P3; Ø 一个全双工串行I/O口; Ø 2个16位定时器/计数器;Ø 5个中断源,分为2个优先级;虽然89C51的型号有很多种,而且每种型号的单片机的性能都很好,但从我们的设计来看,大屏幕显示系统是一个耗能较大的系统,所以不能使用低能量方式的型号,因为对频率的要求不是很高,只不过是控制显示屏的更新速度,频率越大更新速度就越快,但他的更新频率还要考虑到其他芯片的工作速度,像数据存储器的存储速度等,所以又不能盲目选择,考虑到程序数据存储器的工作速度不是很高,较高频率可能使其不能正常工作,故选择12MHz晶振的单片机。 (二)特点Ø 与MCS-51微控制器产品系列兼容Ø 片内有4KB可在线重复编程的快闪擦写存储器Ø 32条可编程I/O线Ø 程序存储器具有三级加密保护Ø 可编程全全双工串行通道Ø 空闲状态维持低功耗和掉电状态保存存储内容Ø 而且与87C51系列的引脚也完全兼容Ø 数据保留时间:10年Ø 全静态工作:0Hz-24HzØ 两个16位定时器/计数器Ø 低功耗的闲置和掉电模式Ø 片内振荡器和时钟电路(三)片内总体结构89C51片内总体结构的详细框图如图3-2所示。它主要由九个部件组成,一个8位的中央处理器;片内数据存储器(RAM128B/256KB);128字节/256字节的数据存储器(RAM);32条I/O口线;2个或3个定时器/计数器;片内4kb程序存储器Flash ROM;用于存放程序、一些原始数据和表格;特殊功能寄存器(SFR);以及一个片内振荡器和时钟电路。这九个部件都是通过片内单一总线连接而成,其基本结构依然是通过CPU加上外围芯片的结构模式。但在功能单元的控制上却有了重大变化,采用了特殊功能寄存器的集中控制方法。 图32 总体结构框图图33 89C51引脚结构图 (四)芯片的引脚说明1、主电源引脚VCC和VSS VCC在正常待机、掉电、操作时提供+5v电压VSS接地端2、输入/输出(I/O)引脚P0、P1、P2、P3(1)P0口P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。(2)P1口P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。(3)P2口P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。 P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。(4)P3口 P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故, P3口也可作为AT89C51的一些特殊功能口,如下表所示:P3.0 RXD (串性输入)P3.1 TXD (串行输出)P3.2 (外部中断0输入)P3.3 (外部中断1输入)P3.4 TD (定时器0输入)P3.5 TI (定时器1输入)P3.6 (片外数据存储器写选通)P3.7 (片外数据存储器读选通)作为第一功能使用时,就作为普通I/O口用,功能和操作方法与P1口相同。作为第二功能使用时,各引脚的定义如上,值得强调的是,P3口的每一条引脚均可独立定义为第一功能的输入输出或第二功能。P3口能驱动3个低功耗LSTTL逻辑电路的输入端,能在没有外部上拉作用的情况下驱动CMOS输入端。设计中主要应用了P3口的P3.0、P3.1、P3.6、P3.7口。P3.6(),P3.7()作为选通信号与片外数据存储器相连接。3、控制或与其它电源复用引脚(1)复位单片机的复位都是靠外部电路实现的,在振荡器运行的情况下,要实现复位,必须使RST引脚保持2个机器周期的高电平。复位电路的核心就是必须保证RST引脚上出现10ms以上稳定的高电平,这样就能实现可靠的复位。推荐在此引脚与Vss引脚之间连接一个约8.2K的下拉电阻,与Vcc引脚之间连接一个约10F的电容,以保证可靠的复位。复位操作使P1、P2、P3口都为1,这种操作可以达到异步目的,虽然振荡器还没有开始工作。设计中选用上电复位。如下图3-5所示:图35 复位电路(2)ALE 当访问外部存储器时,ALE的输出把地址的低字节锁存到外部锁存器。即使不访问外部存储器,ALE端仍以不变的频率(振荡器频率的1/6)周期性的发出正脉冲信号,因此,它可以用作对外输出的时钟,或用于定时目的。然而要注意的是,每当访问外部数据存储器时,将跳过一个ALE脉冲。ALE端可以驱动(吸收或输出电流)八个LSTTL逻辑电路的输入端,它没有外部上拉可以驱动CMOS输入端。(3)是外部存储器读选通信号输出端,在从外部程序存储器取指令期间,在每个机器周期内两次有效,但在此期间,每当访问外部数据存储器时,这两次有效的信号将不出现。在从内部程序存储器取指令时不工作。可以驱动(吸收或输出电流)八个LSTTL逻辑电路的输入端,它没有外部上拉可以驱动CMOS输入端。(4) 当保持高电平时,cpu访问内部程序存储器,但在PC(程序计数器)值超过0FFFH(8031)或1FFFH(8052)时,将自动转向执行外部程序存储器内的程序。当保持低电平时,cpu只访问外部程序存储器,不管是否有内部程序存储器。必须不能悬空4、外接晶体引脚XTAL1和 XTAL2XTAL1接外部晶体的一个引脚。在单片机内部,他是一个反相放大器构成的振荡电路的输入端,这个放大器构成了片内振荡器。当外部振荡器工作时,此引脚作为驱动端接收外部振荡器信号。XTAL2接外部晶体的另一端。在单片机内部,他是一个反相放大器构成的振荡电路的输出端,当外部振荡器工作时,此引脚应悬空。(五)、待机和掉电方式处理图36介绍了内部待机和掉电方式时钟结构,图表明,掉电方式使振荡器停止工作,待机方式语序中断、串行口、定时器在cpu的时钟关闭时,继续执行其功能。这些特殊方式被经过特殊功能寄存器软件PCON(电源控制)所激活,它的硬件地址是87H,PCON没有位寻址功能。 图36 待机和掉电方式硬件图PCON:电源控制寄存器(MSB) (LSB)SMOD-GF1GF0PDIDL本设计中并没有应用到待机方式和掉电方式,所以这里不做详细说明了,而且电源控制寄存器的后几个标志符也就没有发挥其作用,但系统应用到了串行口方式,所以SMOD标志符保留其功能。表31 电源控制寄存器功能表标志符位置名称及功能SMODPCON.7双波特率选择位,SMOD=1,在串行口方式1,2,3情况下波特率提高一倍一PCON.6无定义一PCON.5无定义一PCON.4无定义GF1PCON.3通用标志位GF0PCON.2通用标志位PDPCON.1掉电方式位,设置该位来激活掉电方式工作IDLPCON.0待机方式位,设置该位来激活待机方式工作如果将PD和IDL同时置1,先进入掉电方式。单片机复位时,PCON的状态为(000x0000)时钟停止方式静态标志,TSC80C31/80C51时钟速度能减少到0MHz而不丢失存储器和寄存器中的任何数据,这种方式允许按步使用,而且允许通过将时钟频率降低到任意值来减少系统能量消耗。在0MHz,能量消耗和在掉电方式下是相同的(六)、振荡器特点一个用于构成振荡器的反相放大器,引脚XTAL1和XTAL2分别是放大器的输入端,如图3-7所示,使用石英晶体或陶瓷谐振器。 图37 石英晶体振荡器采用外部时钟方式,外部信号接至XTAL1,而XTAL2可处于不接状态如图6所示,外部振荡信号通过一个2分频的触发器而成为内部时钟信号,对外部信号的占空比没有什么要求,但在具体的数据菜单上高电平持续时间和低电平持续时间必须注意。 图38 外部振荡信号结构图 这里我们选择内部时钟方式,12MHz的晶体振荡器 如图3-729二、最小应用系统 能维持单片机运行的最简单配置的系统。这种系统成本低廉、结构简单,常常构成一些简单的控制系统,如开关状态的输入/输出控制等。对于片内有ROM/EPROM/FLASH RAM的单片机,构成最小应用系统时,只要将单片机接上时钟电路、复位电路和电源即可,如图所示XTAL1 P2.72.0XTAL2 89S51 RST ALE P0.70.0地址锁存EPROMXTAL1 P0 P1XTAL2 P2 P3RST 89S51 图 89S51单片机最小应用系统由于集成度的限制,这种最小应用系统只能用作一些小型的控制单元。其应用特点是:有可供用户使用的大量I/O口线,P0、P1、P2、P3都可用作用户I/O口用。由于没有外部存储器扩展,应接高电平。内部存储器容量有限(只有4KB地址空间)。应用系统开发具有特殊性。由于这类应用系统应用程序量不大,外电路简单,因而采用模拟开发手段较好。对于片内无ROM/EPROM/FLASH RAM的单片机,其最小系统除了外部配置时钟电路、复位电路和电源外,还应在片外扩展EPROM、EEPROM作为程序存储器用,如图3(b)所示,应接地。三、地址锁存器 由于单片机的P0口是分时复用的地址/数据总线,因此在进行程序存储器扩展时,必须利用地址所存器将地址信号从地址/数据总线中分离开来。74HC573包含八进制3态非反转透明锁存器,span是一种高性能硅门CMOSspan器件。spanSL74HC573跟LS/AL573的管脚一样。器件的输入是和标准CMOS输出兼容的,加上拉电阻他们能和LS/ALSTTL输出兼容。输入是和标准 CMOS 输出兼容的;加上拉电阻,他们能和 LS/ALSTTL 输出兼容。当锁存使能端LE为高时,这些器件的锁存对于数据是透明的(也就是说输出同步)。当锁存使能变低时,符合建立时间和保持时间的数据会被锁存。×u36755X出能直接接到 CMOS,NMOS 和 TTL 接口上×u25805X作电压范围:2.0V6.0V×u20302X输入电流:1.0uA×CMOS 器件的高噪声抵抗特性三态总线驱动输出·置数全并行存取·缓冲控制输入·使能输入有改善抗扰度的滞后作用原理说明:M54HC563/74HC563/M54HC573/74HC573的八个锁存器都是透明的D 型锁存器,当使能(G)为高时,Q 输出将随数据(D)输入而变。当使能为低时,输出将锁存在已建立的数据电平上。输出控制不影响锁存器的内部工作,即老数据可以保持,甚至当输出被关闭时,新的数据也可以置入。这种电路可以驱动大电容或低阻抗负载,可以直接与系统总线接口并驱动总线,而不需要外接口。特别适用于缓冲寄存器,I/O 通道,双向总线驱动器和工作寄存器。数据锁存当输入的数据消失时,在芯片的输出端,数据仍然保持; 这个概念在并行数据扩展中经常使用到。74HC573引脚图1脚三态允许控制端低电平有效1D8D为数据输入端1Q8Q为数据输出端LE为锁存控制端四、外部数据存储器的扩展原理 单片机扩展外部RAM的电路原理如图312所示: 图312 扩展外部RAM电路原理图从图可以看出:数据存储器只使用、控制线而不用。正因为如此,数据存储器与程序存储器地址可完全重叠,均为0000HFFFFH,但数据存储器与I/O口及外围设备是统一编址的,即任何扩展的I/O以及外围设备均占用数据存储器地址。在图中,P0口为RAM的复用地址/数据线,P2口的三根线用于对RAM进行页面址。在对外部RAM读/写期间,CPU产生/ 信号。 本设计选用62256静态RAM,它是32K*8位的静态随机存储器芯片,它采用CMOS工艺制造,单一+5V供电,额定功耗200mW,典型存取时间200ns。为28线双列直插式封装,其管脚配置如图3-13所示, 图3-13 62256引脚图 各引脚定义如下:A0A14为片内15位地址线;I/O0IO7为双向数据线,为片选信号线;为读允许信号线;为写信号线。在设计中,它的取址范围是0000H7FFFH。第三节 数据输出电路 以24区中的一区为例,向移位寄存器内输入数据的总体思想是通过3片 74LS273锁存不同地址的数据。由74LS138译码器进行片选,逐个选通74LS273锁存器,达到向寄存器输入24位数据的目的。由于74LS273是带清除端CLR的八D触发器,只有当清除端为高电平时才具有锁存功能,所以将锁存器74LS273的CLR引脚分别接高电平,使其保持具有锁存功能。因为74LS273的CLK引脚是锁存的控制端,在上升沿锁存,所以使用74LS138译码器通过输出端高低电平的变化控制CLK的电平的上升、下降,达到控制锁存的目的。地址输入端由A15、A14、A13控制,74LS138有3个附加的控制端S1、和,当S1=1、+=0时,Gs输出为高电平(S=1),译码器处于工作状态,否则,译码器被禁止,所有的输出端被封锁在高电平,故将,接地,S1接VCC,其功能表如下:表32 3线8线译码器74LS138的功能表输入输出S1+A2A1A0Y0Y1Y2Y3Y4Y5Y6Y70*11111111*100000000*00001111*00110011*0101010111011111111110111111111101111111111011111111110111111111101111111111011111111110在选片上我们的具体做法是:将74LS138译码器的三个输出端(这里我们只对三个74LS273芯片进行片选,所以可以是任意三个输出端,我们选用)分别接到三个或门的输入端,或门的另一端接低电平信号,我们这里接。从上表可以知道,38译码器没有选通是输出端全都是1,所以经过或门后273锁存器不工作,当38译码器输入100时,为0,其他端为1,经过或门变为低电平产生一个下降沿,在将38译码器输入111,使为1,经过或门变为高电平产生一个上升沿,故第一片273锁存器锁存8位数据;当38译码器输入101时, 为0,其他端为1,对于来说产生了一个下降沿,将 38译码器输入111时,为1,经过或门产生了一个上升沿,第二片273锁存器锁存8位数据;依次类推,当38译码器先后输入110和111后,端产生一个上升沿,第三片23锁存器锁存8位数据。译码器的地址输入端与P27、P26、P25相连,取值分别为100、101、110所以他的地址范围是8000H8FFFH、A000HAFFFH、C000HCFFFH。因为每一位数据信号通过移位寄存器要控制发光二极管的亮灭,单凭芯片的驱动能力是远远不够的,所以,我们在锁存器的每一个输出端连接一个74F07OC门,它是6位驱动器,为LED提供一定的驱动电流。OC门又称为集电极开路的门电路,能驱动较大电流。因为系统中这种门电路工作在开路,所以每一个74F07需要接一个上拉电阻,1K阻值的电阻即达到其要求。因为每个区的移位寄存器是与其他23个区的移位寄存器并联,所以在送给一个区数据的同时也将这24位数据送给另外23个区,只不过在给一个区送数据的时候,其他23个区没有移位脉冲,不保存数据,当一个区送完数据而完成这一块的显示更新时,新的24位数据送入下一个区,而将最初送入的数据覆盖,因此并不影响下一个区数据的移位,依此方式传送数据。而将最初送入的数据覆盖,因此并不影响下一个区数据的移位,依此方式传送数据。第四节 时钟脉冲电路大屏幕的显示主要是由CD4094移位寄存器的移位来传送显示信号,移位寄存器的每一次移位都需要一个脉冲,由于大屏幕分为24块,即24区,每个区的各个移位寄存器需要移位脉冲控制。故采用三个74LS138译码器级连来输出24个信号,通过非门产生高低电平进而产生脉冲信号,根据系统要求送向24区,每一个时钟脉冲同时送给一个区的24*24个移位寄存器,选定一个区后,连续输送192个脉冲,更新完这一区后,选择下一区。74LS138译码器的功能前文已经叙述,不在重复。这里只讲一下脉冲产生的具体做法,如图11所示,译码器通过P10P17口进行片选和地址输入。将各个译码器的地址输入端A、B、C分别和P12、P11、P10连接在一起。采用P15、P14、P13进行片选,当P15、P14、P13为000时,由译码器的功能可知,三片译码器均不被选通,不工作;当P15、P14、P13为001时,第一片译码器被选通, P12、P11、P10为000时输出信号经过非门产生一个脉冲信号,为了避免其他输出端在此时产生脉冲信号,将第一片译码器的输出端重新置1,经非门变为低电平,再将P12、P11、P10置为000使输出信号经过非门再产生一个脉冲信号,依此方法,将192个脉冲送向24*24个移位寄存器。以次类推,当P12、P11、P10为001时选通第二区,方法同上,输出192个脉冲送向24*24个移位寄存器,就这样依次将脉冲信号传送给八个区;当 P15、P14、P13为010时,同样,第二片译码器被选通,P12、P11、P10值的变化产生的脉冲信号将依次传送给另八个区;当P15、P14、P13为011时,第三片译码器被选通,脉冲信号依次送给最后八个区,这样脉冲信号传送完毕。同样要控制发