分数指数幂的运算课件.ppt
分数指数幂,复习:1、判断下列说法是否正确:(1)2是16的四次方根;(2)正数的n次方根有两个;(3)a 的n次方根是;(4),解:(1)正确;,(2)不正确;,(3)不正确;,(4)正确。,2、求下列各式的值:,解:(1)原式25;(2)原式,2、分数指数幂,初中已学过整数指数幂,知道:,a0=1,(nN*),n 个,(a 0),整数指数幂的运算性质:,(1)、am.an=am+n(a0,m,nZ),(2)、(am)n=amn(a0,n,mZ),(3)、(ab)n=anbn(a0,b0,nZ),下面讨论根式,先看几个实例,(a0),与幂的关系,指数间有关系:,可以认为,定义正数a的分数指数幂意义是:,(m、nN*且n1),0的正分数指数幂等于0;0的负分数指数幂没有意义。,这样,指数的概念就由整数指数幂推广到了分数指数幂,统称有理数指数幂。可以证明,整数指数幂的运算法则对有理指数幂也成立,即有理指数幂有如下的运算法则:,(1)、aras=ar+s(2)、(ar)s=ars(3)、(ab)r=arbr 其中a0,b0 且r,sQ。,例1、a为正数,用分数指数幂表示下列根式:,解:,解:,解:,解:,口答:1、用根式表示下列各式:(a 0)(1)(2)(3)(4)2、用分数指数幂表示下列各式:(1)(2)(3)(4),例2、利用分数指数幂的运算法则计算下列各式:,解:,=100,=16,例3 化简(a0,x0,rQ):,练习:书本P54 第3题,说明:1、利用分数指数幂进行根式运算时,顺序是先把根式化为分数指数幂,再根据幂的运算性质进行计算.2、对于计算的结果,没强制要求是用分数指数幂的形式还是根式的形式表示,但结果不能同时含有根号和分数指数的,也不能既有分数又含有负指数.,探究:无理数指数幂的意义,思考1:我们知道 1414 21356,那么 的大小如何确定?,一般地,无理数指数幂(a 0,是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.,例1 求下列各式的值(1);(2);(3);(4).,理论迁移,例2 化简下列各式的值(1)(2)(3)(4),小结:1、n次根式的定义及有关概念;,2、幂的运算性质可以从整数指数推广到有理数指数,再推广到实数指数的形式;,3、用分数指数表示根式的目的是为将根式运算转化为指数运算;,作业:,P54练习:2,3.P59习题2.1A组:2.,