毕业设计(论文)齿辊破碎机详细设计(全套图纸).doc
1 概述全套CAD图纸,联系1538937061.1破碎理论破碎是相当复杂的,它与被破碎物本身的性质(物料的均匀性、硬度、密度、钻度、料块的形状和含水率)以及所选择的机械装备等有关。破碎物料时所加的外力除了使物料块发生相对移动和转动外,还使物料破碎。确定破碎时所消耗的功与被破碎物料的破碎程度之间的关系是相当重要的。破碎的现有理论中以表面理论和体积理论为最普遍,虽不能得到十分精确的结论,但可作为选型或设计时的参考。1.1.1表面理论该理论认为破碎时所消耗的功与被破碎物料新形成的表面积成正比。一般情况下,当将边长为lcm的立方体分成边长为1/ncm的小立方体时,可得到个小立方体,分割平面数为3 (n-1),所消耗的总功为3P (n-1)。假设将上述立方体物料分割成边长分别为1/(cm)和1/ (cm)的小立方体,则其所消耗的功之比为Pm1 /Pm2=3P (m1-1) /3P (m2-1)= (m1-1)/(m2-1) ,当m1和m2相当大时,可以写成Pm1 / Pm2=m1/m2。由此可见,破碎所消耗的功与物料的破碎度成比例。1.1.2体积理论该理论是指破碎物料所消耗的功等于使物料变形直到在物料内部产生极限应力(抗压极限强度)所消耗的功。根据虎克定律,压缩时物料内部产生的应力与应变成正比,即=E式中 物料内部应力,N/ 物料的应变;E 物料弹性模量,N/设N为使物料变形的外力,A为物料横截面面积,L为物料的缩短变形量,L为物料的原始长度,那么=N/A;= L/L从而N/A=EL/L 得出L = NL/ EA 其中L, E, A为常量,则L与N的关系为直线关系,则使物料变形L所消耗的功W就为W=NL/2=L/2EA物料内部产生的应力= N/A代人上式可得W=AL/2EAL即为物料的体积,所以W=V/2 E当要将物料破碎断裂时,应力达到了物料的抗压强度极限应力,从而可得到物料破碎时所消耗的功为= V/2E由此可见,对每种物料而言,和E均为定值,则功与体积V成正比。因为当应力大于强度极限时物料方可破碎,而大多数岩石都不符合变形的虎克定律,实验表明,体积理论仅可用于粗略计算靠冲击力或压力进行破碎的机械所消耗的功。1.2一般破碎机械破碎机械是对固体物料施加机械力,克服物料的内聚力,使之破裂成小块物料的设备。破碎机械所施加的机械力,可以是挤压力、辟裂力、弯曲力、剪切力、冲击力等,在一般机械中大多是两种或两种以上机械力的混合。对于坚硬的物料,适宜采用产生弯曲和辟裂作用的破碎机械;对于脆性和塑性的物料,适宜采用产生冲击和辟裂作用的机械;对于粘性和韧性的物料适宜采用产生挤压和碾磨作用的机械。在矿山工程和建设工程上,破碎机械多用来破碎爆破开采所得的天然石料,使之成为规定尺寸的矿石或碎石。在硅酸盐工业中,固体原料、燃料和半成品需要经过各种破碎加工,使其粒度达到各道工序所要求的尺寸,以便进一步加工操作。通常的破碎过程,有粗碎、中碎、细碎三种,其入料粒度和出料粒度,如表1-1所示。所采用的破碎机械相应地有粗碎机、中碎机和细碎机三种。表1-1 物料粗碎、中碎、细碎的划分(mm)类 别入料粒度出料粒度粗碎300900100350中碎10035020100细碎50100515工业上常用物料破碎前的平均粒度D与破碎后的平均粒度d之比来衡量破碎过程中物料尺寸变化情况,比值i称为破碎比(即平均破碎比) i = D/d为了简易地表示物料破碎程度和比较各种破碎机的主要性能,也可用破碎机的最大进料口尺寸和最大出料口尺寸之比来作为破碎比,称为标称破碎比。在实际破碎加工时,装入破碎机的最大物料尺寸,一般总是小于容许的最大进料口尺寸,所以,平均破碎比只相当于标称破碎比的0.70.9。破碎机械常用的类型有:颚式破碎机、圆锥破碎机、旋回式破碎机、锤式破碎机和辊式破碎机等。颚式破碎机广泛运用于矿山、冶炼、建材、公路、铁路、水利和化工等行业。根据其结构不同可分为复摆颚式破碎机(即单复摆颚式破碎机)和简摆颚式破碎机。复摆颚式破碎机适用于粗,中碎抗压强度250mpa以上的各种矿石岩石。简摆颚式破碎机则可以破碎各种硬度的矿石和岩石,且特别适用于破碎各种硬度的磨蚀性强的石料。复摆颚式破碎机工作时,电动机通过皮带轮带动偏心轴旋转,使动颚周期地靠近、离开定颚,从而对物料有挤压、搓、碾等多重破碎,使物料由大变小,逐渐下落,直至从排料口排出。表1-2 简摆颚式破碎机的技术规格规格进料口尺寸mm最 大 进料粒度 mm出 料 口调节范围mm生产率t/h电动机功率kw长宽1200×900井下1200900650150180140200110.01200×900液压120090075015020014020095.01500×120015001200850130180170180.02100×1500210015001250250300400500280.0表1-3 复摆颚式破碎机的技术规格规格进 料 口 尺寸 mm最大进料粒度 mm出料口调节范围mm生 产 率t/h电动机长宽型 号功率kw250×150250150125104014Y1325-45.5350×200350200160105025Y160M-67.5380×2403802401721Y160M-67.5400×2504002502102080520Y180L-615.0400×250分段式400250400×250移动式4002502202080520M200L2-6-05022400×250汽油机驱动40025022020801012M-050汽油机820(hp)400×2504002501802080810Y180M-417.0500×2505002502202080540Y200L2-622600×4006004003504016017115Y250M-830.0750×5007505004505017070YR280-855.0900×6009006004807520052192YR315L-8751200×9001200900750100200150300YR315L-6110.0辊式破碎机工作可靠、维修简单、运行成本低廉,排料粒度大小可调。按照辊子数量可分为单辊破碎机、双辊破碎机和多辊破碎机(一般是四辊)等,按照辊面特征,可分为光面辊和带齿辊两种。单辊破碎机,用于破碎石灰石、煤等物料,物料块在辊子与带齿板间被轧碎。表1-4 单辊破碎机的技术规格规格 mm辊子转速r/min进料粒度mm卸料粒度mm电动机功率kw生产率t/h外形尺寸mm长×宽×高整机质量t915×18305670002253508505660×4330×3370801500×28006300×1000×2500200554007267×3250×173532.81500×21405.2-402503007136×2600×181027.131000×1300-1200×750×30010030013604700×2250×11168.1双齿辊破碎机主要适用于矿山,冶金、化工、煤矿等行业脆性块状物料的粗,中级破碎,其入料粒度大,出料粒度可调,可对抗压强度160MPa的物料进行破碎。其结构紧凑,且破碎力由内部机构承受,基础不受力,特别适用于移动式设备,也广泛适用于各种场合的物料破碎。 破碎机充分利用脆性材料的抗弯、抗剪强度比抗压强度低的特点,采用交叉布齿,使破碎齿受力均匀,降低能耗; 采用大齿、小辊、螺旋布齿,多破碎盘的结构,有更强的挟制大块能力,重复破碎少,生产能力强; 在两个破碎辊下设有破碎棒,形成破碎齿和破碎棒三级破碎过程且可调整出料粒度,使碎后粒度均匀; 齿辊转速低、磨损小、燥音低、粉尘小。被破碎物料经给料口落入两辊子之间,进行挤压破碎,成品物料自然落下。遇有过硬或不可破碎物时,辊子可凭液压缸或弹簧的作用自动退让,使辊子间隙增大,过硬或不可破碎物落下,从而保护机器不受损坏。相向转动的两辊子有一定的间隙,改变间隙,即可控制产品最大排料粒度。双辊破碎机是利用一对相向转动的圆辊,四辊破碎机则是利用两对相向转动的圆辊进行破碎作业。表1-5双辊破碎机的技术规格规格 mm辊子转速r/min进料粒度mm卸料粒度mm电动机功率kw生产率t/h外形尺寸mm长×宽×高整机质量t双光面辊1200×1000122.2402124015907470×4780×201845.318750×7005040210283.4173889×2865×201812.252610×40075850303012.8402235×1722×8103.297600×4001203629204152615×1760×19372.55400×2502003228105101295×940×8201.3双齿面辊900×90037.58000100281253217×1694×419813.2701251500150180450×4506410020001008552260×2206×7663.765075450503502520四辊破碎机是一种冶金矿山设备配套中、细碎产品,也可通过调整上、下辊的间隙,破碎所需粒度的物料。表1-6四辊破碎机的技术规格规格 mm辊子转速r/min进料粒度mm卸料粒度mm电动机功率kw生产率t/h外形尺寸mm长×宽×高整机质量t1200×100083.38130385535409610×5660×432567153.166204107550609000×70010810021028184175×3150×314727.641894020161.3新型的齿辊破碎机本设计所涉及的新型的辊颚破碎机结合了颚式破碎机和齿辊破碎机的优点,使生产能力得到了很大的提高,出料粒度的均一性得到了很好的保证,使物料得到了有效的破碎,这是有生产的实践为证的。因该种机械的新的一面,所以尚未有成熟的计算方法对其进行精确的计算,只能在传统破碎机械计算的基础上,结合生产实践,对其进行粗略的估算。其结构图大致如下所示: 1 带式输送机 2 小齿辊 3 大齿辊 4 颚板 5 电机 6 电机调整部件 7 箱体 8 箱体底座 9 料度调整系统10 拉杆部件图1-12 齿辊破碎机详细设计2.1产品的技术参数:破碎物料抗压强度:160MPa入料粒度:800mm出料粒度:80mm处理量:2000t/h左右大齿辊转速:120r/min左右,大齿辊转速:160r/min左右2.2电机选型2.2.1电机功率计算对于功率的计算采用如下的近似理论计算方法。本方法是基于电机的功率应该与单位时间的破碎物料的功耗相同的原则,即认为电机的功率应如下求得:F=QW/其中Q:破碎机的生产能力t/hW:单位生产量的功耗kWh/t:破碎机的传动效率采用Rittinger法确定单位生产量的功耗:即:m:Bond功指数,煤的Bond功指数为7.91KW.h/tE:占排料粒度80以上的组成部分的粒度尺寸(um)A:占给料粒度80以上的组成部分的粒度尺寸(um)i:常指数,取0.45-0.5。2.2.2电机选择由于是所设计的破碎机的新颖性,暂时还没有成熟的功率计算方法,故参考上述传统破碎机械电机功率的计算方法,结合生产实践的经验,估取电机功率为160Kw, 选择佳木斯电机股份有限公司的YB355S-6的电机。其主要参数如下:额定功率:160KW 转速:980r/min效率:0.94 功率因数:0.87输出轴径:90mm2.3传动机构的设计及计算根据上述所得的电机及齿辊转速,初步确定电机至大齿辊间的减速比为 i=980/120 =8.17电机至小齿辊间的减速比为: I=980/160 =6.13根据生产实践经验,选定电机至大齿辊间的减速传动机构为一对带轮和一对齿轮。结合带轮和齿轮的传动特点,取带轮间的减速比为1.6,齿轮间的减速比为5.2;电机至小齿辊间的减速传动机构则在电机至大齿辊间减速传动的基础上再加上两个介轮和一个齿轮,它们的具体设计如下述所示。2.3.1带传动的设计计算参考机械工业出版社出版的机械设计手册第二版的第四卷。已知输入轴转速980r/min,输入功率P=160kw1)设计功率 由表33.1-2查得共况系数1.6, P1.6×160=256kw2)选定带型 根据=256kw和=980r/min,由图33.1-2确定为E型带。3)小带轮基准直径及大带轮基准直径 参考表33.1-18和图33.1-2,取560mm,取传动比i=1.6,弹性滑动系数0.02。则大带轮基准直径i(1-)=1.6×560×0.98=878.1mm由表33.1-18取=900mm。4)大带轮轴实际转速 (1-)/=560×0.98×980/900=597.58r/min5)带速v v=/(60×1000)= ×560×980/(60×1000)=28.72m/s不超过30m/s,符合要求。5)初定轴间距 按要求取 =0.7(+)=0.7×(560+900)=1022mm6)所需基准长度 2+(+)/2+ =4364.5mm 由表33.1-7选取基准长度4660mm。 7)实际轴间距a a=+(-)/21170mm安装时所需最小轴间距 a-0.0015=1101.1mm张紧或补偿伸长所需最大轴间距 a+0.02=1263mm9)小带轮包角 10)单根V带的基本额定功率根据560mm和980r/min由表33.1-17 g查得E型带31.35kw。 11)考虑传动比影响,额定功率的增量由表33.1-17g查得6.06kw。 12)V带根数z z=/(+)由表33.1-13查得=0.96,由表33.1-15查得=0.9,则 Z=256/(31.35+6.06) ×0.96×0.9=7.92取z8根。 13)单根V带预紧力 =500(2.5/-1) /(zv)+m由表33.1-14查得m0.17kg/m,则 =500×(2.5/0.96-1) ×256 /(8×28.72)+0.17×1635.52N。14)压轴力25880.88N。15)带轮结构和尺寸由YB355S-6电动机可知,其轴伸直径90mm ,长度L=170mm, 故小带轮轴孔直径应取90mm,毂长L=170mm 。由表33.1-22查得,大带轮和小带轮结构都为六椭圆辐轮。轮槽尺寸及轮宽按表33.1-20计算,参考图33.1-5典型结构,画出小带轮工作图(见图)。图2-1 小带轮大带轮的示意图如图所示: 图2-2 大带轮2.3.2齿轮传动设计计算参考中国矿业大学出版社出版的机械设计工程学。传递功率P=152kw,主动齿轮转速597.58r/min。1) 选择齿轮材料查表8-17,小齿轮选用20CrMnTi,调质渗碳淬火,回火,硬度5662HRC;大齿轮选用20CrMnTi,调质渗碳淬火,回火,硬度5662HRC。2)按齿根弯曲疲劳强度进行设计计算设计计算公式 齿轮模数mmm确定齿轮传动精度等级 按(0.0130.022),估算圆周速度5.3m/s,参考表8-14和表8-15,选取公差组8级。齿宽系数 查表8-23,按齿轮相对轴承为悬臂布置,取0.5。小轮齿数,在推荐值2040中取24。取传动比i5.2,则=125。齿数比u5.208传动比误差u/u u/u=(5.208-5.2)/5.2=0.0015在±5范围内。小轮转矩 由式(8-53)得 9.55×P/=2.34×N·mm载荷系数K 由式(8-54)得 K=使用系数 查表8-20得=1.75 动载荷系数 查图8-57得初值=1.21齿向载荷分布系数 查图8-60得=1.27齿间载荷分配系数 由式(8-55)及得 1.88-3.2()cos=1.721查表8-21并插值得=1.242,则载荷系数K的初值=3.34。齿形系数 查图8-67 小轮2.08 大轮2.16应力修正系数 查图8-68 小轮1.58 大轮1.83重合度系数 由式(8-67)得 0.25+0.75/=0.686许用弯曲应力 由式(8-71)有 弯曲疲劳极限 查图8-72得850N/=740 N/弯曲寿命系数 查图8-73得1尺寸系数 查图8-74得1安全系数 查表8-27得1.6,则 531 N/,463 N/故齿轮模数m的设计初值 =6.91mm取=7mm。小轮分度圆直径参数圆整值 168mm圆周速度v V= /60000=5.2539m/s与估取=5.2很相近,对取值影响不大,不必修正。 =1.21,K=3.34齿轮模数m=7mm。小轮分度圆直径168mm大轮分度圆直径 m=875mm中心距a a=m()/2=521.5mm齿宽b b=83mm大轮齿宽b=83mm小轮齿宽 +(510)88mm3) 按齿面接触疲劳强度校核计算由式(8-63)知 弹性系数 查表8-22,得189.8。节点影响系数 查图8-64(,0)得2.5。重合度系数 查图8-65(0)得0.88。许用接触应力 由式(8-69)得 接触疲劳极限应力、 查图8-69得 1650MPa, =1620MPa接触强度寿命系数 查图8-70得1。硬化系数 查图8-71及说明得1。接触强度安全系数 查表8-27,按一般可靠度取=1.1。则=1500 MPa=1473 MPa又 =988 MPa< =960 MPa<故齿面接触疲劳强度满足要求,也即所设计的齿轮满足强度要求。4) 齿轮其它尺寸计算及结构设计由表8-31可知,小齿轮为盘式锻造齿轮,大齿轮为轮辐式铸造齿轮以及它们的结构尺寸。画出齿轮的示意图如下所示。 图2-3主动齿轮 图2-4 偏心轴齿轮5)根据传动要求及破碎机的结构合理性,可确定过轮及小齿辊轴端的齿轮的参数及结构尺寸。过轮的齿数为z=57,根据模数m=7mm及分度圆直径 d = mz 可知分度圆直径d=399mm。又过轮宽B=88mm,其结构图如下图所示。图2-5 过轮小齿辊齿轮的齿数z=90,宽度B=83mm,其结构图如下所示。图2-6 小齿辊齿轮2.3.3带轮护罩及齿轮外壳设计带轮护罩可有效保证工作人员的安全。齿轮外壳可使齿轮避免外界环境对其其影响,又保证了有效润滑。2.4齿辊参数计算2.4.1传统的颚式破碎机和辊式破碎机一 颚式破碎机主要参数的计算及其分析1 钳角 颚式破碎机动颚和定颚间的夹角称为钳角。钳角由物料性质、块粒大小、形状等因素决定。如果钳角太大,进料口物料块就不能被颚板夹住,而被推出机外,从而降低生产率。如果钳角太小,虽能增大生产率,但破碎比i减小。图2-7表示从力学角度推算钳角的计算图式。当物料被夹持在破碎腔内,不被推出机外时,这些力应相互平衡,即在x、y方向的分力之和应该分别等于零,于是求得 因,故 式中 为钳角,为物料与颚板间的摩擦角,为物料与颚板间的摩擦系数。 图2-7为了保证破碎机工作时物料块不致被推出机外,必须令即钳角应小于物料与颚板间摩擦角的一倍。2 转速 颚式破碎机的成品,依靠物料自重降落排出,如果动颚摆动(偏心轴转速)速度太快,成品不能充分排出;如果速度太慢,又浪费有效时间,两者都使机械生产率减小。使破碎机获得最高生产率的偏心轴转速n应是 r/min式中 为钳角(度),s为动颚行程(cm)。实际上,由于动颚空行程初期,物料仍处于压紧状态而不掉落,因此,转速应取低些,一般是上式计算值的0.7,即 r/min破碎坚硬物料时,还要取得低些;对于脆性物料,可以适当取大;大尺寸破碎机的转速应适当减低,以减小惯性力。也可用下面的经验公式选取转速:进料口宽度B1200mm时 n = (310145)B r/min进料口宽度B>1200mm时 n = (16042)B r/min式中,B的单位是m.3 动颚行程 破碎机的行程是指动颚下端的摆幅,它与偏心轴偏心距、颚板斜角等有关,一般是 s = 2.2e式中 s为动颚行程,e为偏心距。行程与最小出料口尺寸必须保持一定关系,通常最小出料口尺寸是 而进料口宽度a与之间的关系是 a=(910)4生产能力 颚式破碎机生产能力就是指在一定给料和排料粒度条件下单位时间内所能处理的物料量。它与许多因素有关,例如,待破物料性质,破碎机型式和规格,动颚悬挂高度和运动特性,破碎机结构和工艺参数,破碎机制造质量和操作条件、管理水平等等。关于颚式破碎机生产能力的计算,大体上可以分为两类,即理论计算和经验计算。颚式破碎机生产能力通常以动颚往复摆动一次,从破碎腔中排出一个松散棱柱体积的物料作为其计算依据。 一方面,因为颚式破碎机的机构是采用一种由典型的曲柄摇杆机构派生而来的偏心机构,其肘板具有急回运动的特性。从这一特性出发,并考虑到物料从破碎腔中落下最大可能的高度一由设备的几何学条件确定的高度,由图2-8可知,颚式破碎机动颚往复摆动一次,从破碎腔中排出的质量生产能力为:Q=(120150) t/h (1)式中 B,L给料口的宽度和长度,m;b排料口宽度,m;s动颚下端点水平摆动行程,m; 排出产物的平均粒度,m,其值为: 图2-8 破碎腔几何尺寸被破碎物料的固体密度,t/m;考虑被碎碎物料表面摩擦特性的系数,其值与物料类别有关,花岗岩、石英岩等的=1.0,煤和焦炭等的=0. 5;与给入破碎机的物料粒度分布参数有关的函数,与的关系曲线如图2-9所示,参数按如下定义给出: 图2-9 与的关系曲线=(-)/在此 给入物料中的最大粒度,m; 给入物料中的最小粒度,m; 给入物料的平均粒度,m;与通过破碎腔的物料流有关的参数有关的函数,参数是破碎机排料口宽度b与给入物料的平均粒度之比值,即 b/通常破碎机排料口宽度b总是小于给入物料平均粒度的1/2,故可选取为1;考虑颚式破碎机机构具有急回运动特征,且能获得最大生产能力时动颚的摆动次数,其值可由下式得出: r/min (2)式中 K颚式破碎机机构的行程速比系数,通常K=1. 151.25; g重力加速度,;n颚式破碎机动颚的实际摆动次数,r/min;与颚式破碎机动颚摆动次数有关的函数,其值由下面的关系给出:对于n<,n/; n,1; n>,/n。另一方面,假定动颚作平移运动,忽略动颚在摆动过程中啮角变化的影响,那么动颚往复摆动一次,从破碎腔中排出的质量生产能力(图2-10)可按考下式予以计算: 图2-10 颚式破碎机生产能力计算 (3)式中,定颚破碎板和动颚破碎板倾斜安装的角度,+称为颚式破碎机的啮角;被破碎物料的松散系数,一般情况下,取0. 30. 7,破碎坚硬物料时取小值,破碎不太硬的物料时可取大值;其它符号的意义和单位同前。若/2,则有 t/h (4)若0,则 t/h (5)以上从不同的角度出发,给出了颚式破碎机生产能力的理论计算公式(1), (3), (4),(5)等,但它们都各自有其局限性,只可作为定性计算时使用。为了获得一种较为满意的颚式破碎机生产能力,还必须根据生产实际予以校正。故下面再推荐几个经验公式供选用。Taggart A F公式 Q=0.093L t/h (6)或 Q=0. 084 A/i t/h (6a)式中 L., b破碎机排料口长度和宽度,cm;A给料口面积,, ALB;B给料口宽度,cm;i破碎比,i=D/b;D给料粒度,cm。 OnerBckm B 公式 Q=b t/h (7)式中 给料特性(或破碎难易程度)系数,详见表2-1;物料密度校正系数,=/1. 6;破碎物料的松散密度,t/;物料粒度校正系数,见表2-2;排料口单位宽度的生产能力,t/h·mm,见表2-3; b排料口宽度,mm。表2-1给料特性系数表2-2物料粒度校正系数表2-3排料口单位宽度的生产能力利温生公式 Q=150nLS t/h (8)式中各长度单位以“m”计入,其余各符号的意义及单位同前。上述计算公式原则上只适用于简摆颚式破碎机,即它们没有能够反映出不同型式的颚式破碎机与生产能力之间的关系。但实践证明,由于破碎机动颚摆动行程S的大小和方向,以及运动轨迹的差别,各种型式的颚式破碎机的生产能力是不同的。据国外对相同规格的三种不同型式的颚式破碎机在排料口宽度b、动颚摆动次数n和啮角等相同条件下的试验证实,复摆颚式破碎机较简摆颚式破碎机提高生产能力2030%,综合摆动颚式破碎机较简摆提高9095%。因此,在计算简摆以外的颚式破碎机生产能力时,必须乘以一个大于1的型式修正系数 。5 生产能力的影响因素分析以上介绍的几个颚式破碎机生产能力的计算公式揭示了颚式破碎机生产能力与其结构参数(动颚下端点的水平摆动行程S、给料口尺寸B×L、排料口宽度b)、工艺参数(动颚摆动次数n、啮角)和物料性质(密度、松散系数)等之间的函数关系,为提高颚式破碎机生产能力提供了科学依据。1) 适当提高颚式破碎机动颚摆动次数是提高其生产能力的重要途径之一从公式(1), (3), (4), (5)可以明显看出,颚式破碎机理论生产能力是随着动颚摆动次数n的增高而增大的;从公式(1)还可看出,当动颚摆动次数n增高至某一最佳数值n。时,破碎机能够获得最大的生产能力;当动颚在超最佳摆动次数下摆动时,其生产能力将随着动颚摆动次数的增高而降低。同时,实验研究的结果也证明了这一规律。然而,现有颚式破碎机动颚的摆动次数都选择得比较低,特别是大型简摆颚式破碎机和小型复摆颚式破碎机。但因颚式破碎机具有较大的运动质量,如果动愕的摆动速度过快,所产生的惯性力就会比较大,这又将使机器及其基础发生振动,使偏心轴回转不均匀,同时所消耗的功率也较大,并可能引起轴承发热,故其速度也不能过高。因此在破碎机其它有关参数不变化的情况下,适当增高现有颚式破碎机动颚摆动次数n以提高其生产能力是可能的。其增高幅度建议在原有破碎机摆动次数的基础上增高10 15%,大型破碎机取小值,中小型取大值。2) 适当减小颚式破碎机啮角是提高其生产能力的又一重要途径由公式(3), (4), (5)可知,颚式破碎机生产能力在一定条件下与啮角的正切成反比。同时,从Bond F C理论知,颚式破碎机生产能力与其啮角成直线关系,即破碎机的相对生产能力随修正系数成正比例变化: =1+1. 432 7(0. 384-) (9)式中为颚式破碎机的啮角,rad将颚式破碎机的定颚破碎板和动颚破碎板都倾斜安装,并尽量使二者倾斜安装的角度和接近相等,可使其生产能力的相对值提高4%左右。 由国内外有关实验证明,适当减小啮角亦可提高颚式破碎机生产能力。因为啮角减小,物料在破碎腔中完全被破碎所需要的动颚挤压次数减少了,并使得破碎腔上部区域的处理能力比从排料口排出的能力增大,这样破碎腔中总备有需要排出的产品,而不致因破碎不及时而影响排料。例如,原苏联学者巴乌曼BA用400 X 600颚式破碎机破碎抗压强度为300 MPa的花岗岩时,将啮角由改为后,生产能力提高了2040;吉斯淦和高登等都分别进行了减小啮角的试验,认为啮角的大小对破碎机的生产能力有很大的影响,具体结果见表2-4。表2-4 啮角对生产能力影响的实验结果国内某石矿将PEF - 400 X 600颚式破碎机的啮角在原设计的基础上减小',其生产能力亦提高了20%。由上述分析和实验结果可以看出,适当减小啮角是提高颚式破碎机生产能力的又一重要途径。但是,必须注意:啮角的减小会导致破碎比减小,使破碎产品粒度相应增大,因此,减小啮角还必须认真考虑破碎工段对物料粒度的要求。其具体实施方法,应视具体情况而定。如对新设计的颚式破碎机可广泛参考国内外的实践经验,在保证满足破碎粒度要求的前提下,尽量将啮角选择得小一点,国外就曾经选取到=左右。如对现有颚式破碎机进行改造,可采用普通碳素钢锻制成数条斜铁(其条数视破碎机规格大小而定),将其按定颚板纵向筋布置,用焊接方法固定于机架前壁的内侧,于是颚式破碎机的啮角将从减小至 (图2-11)。(a)-定颚破碎板垂直安装 (b)-两破碎板倾斜安装图2-11 啮角对生产能力之影响当定颚破碎板垂直安装时,改造后的相对生产能力可按下式确定 (10)如果颚式破碎机的两破碎板都倾斜安装,啮角+,那么其相对生产能力则为: (11)式中 当斜铁大头的尺寸b。小于Htg时,分母中tg取“+”,bo/H取“一”;反之,b。大于Htg时,分母中tg取“一”,bo/H则取“+”。3) 适当增大破碎机排料口宽度b和动颚下端点水平摆动行程S是提高其生产能力的重要途径之三 从破碎机生产能力的计算公式亦可明显看出,生产能力与排料口宽度b和动胯下端点水平摆动行程S有着极为密切的关系,即随着b和S的增大,生产能力也是明显提高的,而且已为实践所证实。因此,在设计、选择和改造颚式破碎机时,可以通过合理确定排料口宽度b和摆动行程S以提高颚式破碎机生产能力,特别是用于二次破碎的颚式破碎机更应该在这方面下功夫来提高其生产能力。但是,这与传统的“排料口尺寸一般与破碎产品的尺寸大体相同或小一些”的观念是相对立的,因此,具体实施时,必须完全满足下述条件: (1) 适当增大排料口宽度b,其增大范围可定为破碎机破碎腔长度L的0. 0250. 05倍;(2) 适当增大动颚的下端点水平摆动行程S,其增大量可控制在0. 050. 10L.范围内; (3) 在同时满足上述两条件的基础上,必须使给入破碎机的物料量大致等于破碎机的通过量,以保证破碎机破碎腔中的物料形成层状密实充填的流动状态,一边连续不断地给入被破碎物料,一边利用动颚的摆动所产生的压缩作用给予破碎腔中的物料以充分的压实度和高压缩比使之破碎。这种方法的破碎机理是以料层压缩现象为基础的,采用后不仅可以获得小粒度,接近方状的破