欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    三角函数知识点汇总.doc

    • 资源ID:3984884       资源大小:918.50KB        全文页数:11页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角函数知识点汇总.doc

    1三角函数的概念【知识网络】三角函数的概念角的概念的推广、弧度制正弦、余弦的诱导公式同角三角函数的基本关系式任意角的三角函数【考点梳理】考点一、角的概念与推广1任意角的概念:正角、负角、零角2象限角与轴线角:与终边相同的角的集合:第一象限角的集合: 第二象限角的集合:第三象限角的集合:第四象限角的集合:终边在轴上的角的集合:终边在轴上的角的集合: 终边在坐标轴上的角的集合: 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系.考点二、弧度制1弧长公式与扇形面积公式:弧长,扇形面积(其中是圆的半径,是弧所对圆心角的弧度数).2角度制与弧度制的换算:;要点诠释:要熟悉弧度制与角度制的互化以及在弧度制下的有关公式.考点三、任意角的三角函数1. 定义:在角上的终边上任取一点,记 则, , ,2. 三角函数线:如图,单位圆中的有向线段,分别叫做的正弦线,余弦线,正切线.3. 三角函数的定义域:,的定义域是;,的定义域是;,的定义域是.4. 三角函数值在各个象限内的符号:考点四、同角三角函数间的基本关系式1. 平方关系:.2. 商数关系:.3. 倒数关系:要点诠释:同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式.三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法及方程思想的运用.考点五、诱导公式1.的三角函数值等于的同名三角函数值,前面加上一个把看成锐角时原函数值所在象限的符号.2. ,的三角函数值等于的互余函数值,前面加上一个把看成锐角时原函数值所在象限的符号.要点诠释:诱导公式其作用主要是将三角函数值转化为角的三角函数值,本节公式较多,要正确理解和记忆,诱导公式可以用“奇变偶不变,符号看象限(奇、偶指的是的奇数倍、偶数倍)”这个口诀进行记忆.同角三角函数基本关系式和诱导公式【知识网络】同角三角函数基本关系式诱导公式同角三角函数基本关系式和诱导公 式【考点梳理】考点一、同角三角函数基本关系式1平方关系:.2商数关系:.3倒数关系:要点诠释:同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式.三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法及方程思想的运用.考点二、诱导公式 要点诠释:(1)两类诱导公式的记忆,经常使用十字口决:“奇变偶不变,符号看象限”。“奇变”是指所涉及的轴上角为的奇数倍时(包括4组:,)函数名称变为原来函数的余函数;其主要功能在于改变函数名称.“偶不变”是指所涉及的轴上角为的偶数倍时(包括5组:), 函数名称不变,其主要功能在于:求任意角的三角函数值,化简及某些证明问题.(2)诱导公式的引申:3正弦、余弦的图象和性质【知识网络】应用三角函数的图象与性质正弦函数的图象与性质余弦函数的图象与性质正切函数的图象与性质【考点梳理】考点一、“五点法”作图在确定正弦函数在上的图象形状时,最其关键作用的五个点是,考点二、三角函数的图象和性质名称定义域值 域图象奇偶性奇函数偶函数奇函数单调性单调增区间:()单调减区间: )单调增区间:()单调减区间: ()()单调增区间:()周期性对称性对称中心: ,对称轴: ,对称中心:,对称轴: , 对称中心:,对称轴:无最值时,;时, 时,;时,无要点诠释:三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题.考点三、周期一般地,对于函数,如果存在一个不为0的常数,使得当取定义域内的每一个值时,都有,那么函数就叫做周期函数,非零常数叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期).要点诠释:应掌握一些简单函数的周期: 函数或的周期; 函数的周期;函数的周期; 函数的周期.三角函数的性质及其应用【知识网络】图象的作法三角函数的性质及其应用图象的性质【考点梳理】考点一、函数(,)的图象的作法1.五点作图法:作的简图时,常常用五点法,五点的取法是设,由取0、来求相应的x值及对应的y值,再描点作图。2图象变换法:(1)振幅变换:把的图象上各点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍(横坐标不变),得到的图象;(2)相位变换:把的图象上所有点向左(>0)或向右(<0)平行移动|个单位,得到的图象;(3)周期变换:把的图象上各点的横坐标缩短(>1)或伸长(0<<1)到原来的倍(纵坐标不变),可得到的图象.(4)若要作,可将的图象向上或向下平移个单位,可得到的图象记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(>1)”。要点诠释:由的图象利用图象变换作函数的图象时要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量有区别.考点二、的解析式1. 的解析式(, ),表示一个振动量时,叫做振幅,叫做周期,叫做频率,叫做相位,时的相位称为初相.2. 根据图象求的解析式求法为待定系数法,突破口是找准五点法中的第一零点.求解步骤是先由图象求出与,再由算出,然后将第一零点代入求出.要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算.考点三、函数(,)的性质1. 定义域: ,值域:y-A,A.2周期性: 3. 奇偶性:时为偶函数;时为奇函数,. 4单调性:单调增区间: , 单调减区间: , 5. 对称性:对称中心(,0), ;对称轴x= ,6最值: 当即时,y取最大值A当即时,y取最小值-A().要点诠释:求周期、单调区间、最值时一般先将函数式化为,要特别注意、的正负,再把看作一个整体,并结合基本三角函数的图象和性质解出即可;利用单调性比较三角函数大小一般要化为同名函数,并且在同一单调区间;整体代换和数形结合是三角函数学习中重要的思想方法,在学习中,很多三角函数的问题都是通过整体代换并观察基本三角函数的图象而得到的。三角函数的最值与综合应用【知识网络】三角函数的最值三角函数在实际生活中的应用三三角函数的最值与综合应用与综合应用【考点梳理】考点一、三角函数的最值求三角函数的值域,除了判别式、重要不等式、单调性等方法之外,结合三角函数的特点,还有如下常用方法:1. 涉及正、余弦函数以及,其中,都可以考虑利用有界性处理.2. 型,经过降次、整理,得到,其中,再利用有界性处理.3. 形如或的函数求最值时都可以通过适当变换,通过配方来求解.4. 形如,在关系式中时,可考虑换元法处理,如令,则,把三角问题化归为代数问题解决.5. 形如型的函数的最值,可考虑数形结合(常用到直线斜率的几何意义).6. 形如型或能确定所给函数在某些区间上单调,可考虑利用单调性求解.要点诠释:三角函数的最值问题,其本质是对含有三角函数的符合函数求最值,因此求函数最值的方法都能使用当然也要掌握上述的特殊的方法.考点二、(,)的性质1. 定义域: ,值域:y-A,A.2周期性: 3. 奇偶性:时为偶函数;时为奇函数,. 4单调性:单调增区间: , 单调减区间: , 5. 对称性:对称中心(,0), ;对称轴x= ,6最值: 当即时,y取最大值A当即时,y取最小值-A().要点诠释: 求三角函数的单调区间、周期,及判断函数的奇偶性,要注意化归思想的运用,通过恒等变换转化为基本三角函数类型,注意变形前后的等价性.考点三、用三角函数解决一些简单的实际问题三角函数的知识产生于测量、航海和天文学,还在机械制造、电工学、物理学等学科中有着广泛的应用.对于测量中的问题,要理解有关仰角、俯角、方位角、方向角的概念;对几何问题,特别是立体几何中的问题,要依据题意,画出示意图或立体直观图,将问题归结到三角形中去处理.一般情况下,只要构成三角形就可直接应用三角函数的概念和解三角形的知识解决问题,对于一些较为复杂的应用题则需综合应用代数、立体几何或解析几何知识来解.此外,有些应用题在解答过程中使用三角代换可以简化解题过程,使对数值的处理更为方便.三角恒等变换【知识网络】简单的三角恒等变换三角恒等变换两角和与差的三角函数公式倍角公式【考点梳理】考点一、两角和、差的正、余弦公式要点诠释:1公式的适用条件(定义域) :前两个公式,对任意实数,都成立,这表明该公式是R上的恒等式;公式中2正向用公式,,能把和差角的弦函数表示成单角,的弦函数;反向用,能把右边结构复杂的展开式化简为和差角 的弦函数。公式正向用是用单角的正切值表示和差角的正切值化简。考点二、二倍角公式1. 在两角和的三角函数公式时,就可得到二倍角的三角函数公式: ;。要点诠释:1在公式中,角没有限制,但公式中,只有当时才成立;2. 余弦的二倍角公式有三种:;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。3. 二倍角公式不仅限于2和的二倍的形式,其它如4是2的二倍,的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键。考点三、二倍角公式的推论降幂公式:; ; .万能公式:; .半角公式:; ; .其中根号的符号由所在的象限决定.要点诠释:(1)半角公式中正负号的选取由所在的象限确定;(2)半角都是相对于某个角来说的,如可以看作是3的半角,2可以看作是4的半角等等。(3)正切半角公式成立的条件是2k+(kZ)正切还有另外两个半角公式:,这两个公式不用考虑正负号的选取问题,但是需要知道两个三角函数值。常常用于把正切化为正余弦的表达式。

    注意事项

    本文(三角函数知识点汇总.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开