毕业设计(论文)基于MATLAB的直流脉宽调速系统仿真.doc
-
资源ID:3979465
资源大小:1.22MB
全文页数:51页
- 资源格式: DOC
下载积分:8金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
毕业设计(论文)基于MATLAB的直流脉宽调速系统仿真.doc
大连理工大学城市学院 本科生毕业设计(论文)学 院:电子与自动化学院专 业: 自动化 学 生: 指导教师: 完成日期:2011年6月 5日 大连理工大学城市学院本科生毕业设计(论文)基于MATLAB的直流脉宽调速系统仿真总计 毕业设计(论文) 45 页表格 3 个插图 23 幅 摘 要直流调速系统具有调速范围广,精度高,动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。最后在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统,并详细介绍了系统主电路,反馈电路,触发电路及控制电路的具体实现电路。关键词:直流电机;直流调速系统;双闭环系统;仿真AbstractDC motor has been widely used in the area of electric drive because of its neatly adjustment, simple method and DC motor has been widely used in the area of electric drive because of its neatly adjustment, simple method and smooth control in a wide range, besides its control performance is excellent. Beginning with the theory of DC motor, this dissertation builts up the mathematic model of DC speed control system with double closed loops, detailedly discusses the static and dynamic state performance of the system. Afterward, according to automation theroy this papar calculates the parameters of the system. Then, this dissertation simulates and analyzes the system by means of Simulink. The results of simulation are consistent with theory calculation. Some experience was acquired through simulation. Based on the theory and simulation, this dissertation designs a DC speed control system with double closed loops, discusses the realization of main circuit, feedback circuit, control circuit and trigger circuit. Keywords:DC motor;DC governing system;double loop control system,simulink目 录摘 要IAbstractII第1章 绪论11.1 直流调速概念11.2 直流调速系统发展史11.3 研究双闭环直流调速系统的目的和意义31.4 课题研究的主要内容41.4.1 研究内容41.4.2 论文安排4第2章 闭环直流调速系统52.1 直流调速系统的调速原理及性能指标52.1.1 直流调速系统的调速原理52.1.2 直流调速系统的性能指标62.2 电流、转速双闭环直流调速系统的理论分析102.2.1 双闭环调速的工作过程和原理102.2.2 双闭环直流调速系统的组成及其静特性102.3 双闭环直流调速系统的数学模型和动态性能分析142.3.1 双闭环直流调速系统的数学模型的建立142.3.2 起动过程分析152.3.3 动态抗干扰性分析182.4 调节器的工程设计方法192.4.1 PI调节器192.4.2 调节器的设计方法192.4.3 型系统与型系统的性能比较202.4.4 转速电流调节器结构的确定21第3章 PWM脉宽调制233.1 PWM基本介绍233.2 脉宽调制变换器233.3 桥式可逆PWM变换器25第4章 双闭环直流脉宽调速系统设计及仿真294.1 系统总体设计294.2 电流环、转速环的设计314.2.1 转速调节器、电流调节器在双闭环直流调速系统 中的作用314.2.2 调节器的具体设计314.3 双闭环直流脉宽调速系统的MATLAB仿真354.3.1 MATLAB简介354.3.2 电流环的MATLAB仿真354.3.3 转速环的MATLAB仿真374.3.4 双闭环可逆直流脉宽调速系统的MATLAB仿真38总 结42致 谢43参考文献44附 录45第1章 绪论本章简要介绍了直流调速系统的概念、发展过程及其主要特点,并阐述了研究双闭环直流调速系统的目的和意义。1.1 直流调速概念直流调速1是指人为地或者自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或者外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性的交点,使得电动机的稳定运转速度发生变化。1.2 直流调速系统发展史直流传动具有良好的调速特性和转矩控制性能,在工业生产中应用较早并沿用至今。早期直流传动采用有接点控制,通过开关设备切换直流电动机电枢或者磁场回路电阻实现有极调速。1930年以后出现电机放大器控制的旋转交流机组供电给直流电动机(由交流电动机M和直流发电机G构成,简称G-M系统),以后又出现了磁放大器和汞弧整流器供电等,实现了直流传动的无接点控制。其特点是利用了直流电动机的转速与输入电压有着简单的比例关系的原理,通过调节直流发电机的励磁电流或者汞弧整流器的触发相位来获得可变的直流电压供给直流电动机,从而方便的实现调速。但这种调速方法后来被晶闸管可控整流器供电的直流调速系统所取代,至今已不再使用。1957年晶闸管问世后,采用晶闸管相控装置的可变直流电源一直在直流传动中占主导地位。由于电力电子技术与器件的进步和晶闸管系统具有的良好动态性能,使直流调速系统的快速性、可靠性和经济性不断的提高,在20世纪相当长的一段时间内成为调速传动的主流。今天正在逐步推广应用的微机控制的全数字直流调速系统具有高精度、宽范围的调速控制,代表着直流电气传动的发展方向。直流传动之所以经历多年发展仍在工业生产中得到广泛应用,关键在于它能以简单的手段达到较高的性能指标。例如高精度稳速系统的稳速精度达十万分之一,宽调速系统的调速比达1:10000以上,快速响应系统的响应时间已缩短到几毫秒以下。在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。直流电动机具有良好的运行和控制特性,长期以来,直流调速系统一直占据垄断地位,其中,双闭环直流调速系统是目前直流调速系统中的主流设备,它具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。自19世纪80年代起至19世纪末以前,工业上传动所用的电动机一直以直流电动机为唯一方式。到了19世纪末,出现了三相电源和结构简单,坚固耐用的交流笼型电动机以后,交流电动机传动在不调速的场合才代替了直流电动机传动装置。然而,随着生产的不断发展,调速对变速传动装置是一项基本的要求,现代应用的许多变速传动系统,在满足一定的调速范围和连续(无级)调速的同时,还必须具有持续的稳定性和良好的瞬态性能。虽然直流电动机可以满足这些要求,但由于直流电动机在容量、体积、重量、成本、制造和运行维护方面都不及交流电动机,所以长期以来人们一直渴望开发出交流调速电动机代替直流电动机。从60年代起,国外对交流电动机调速已开始重视。随着电力电子学与电子技术的发展,特别是电力半导体器件的发展,使得采用半导体变流技术的交流调速系统得以实现。尤其是70年代以来,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,为交流电力拖动系统的发展创造了有利条件,促进了各种类型交流调速系统:如串级调速系统,变频调速系统,无换向器电动机调速系统以及矢量控制调速系统等的飞速发展。目前交流电力拖动系统已具备了较宽的调速范围,较高的稳速精度,较快的动态响应,较高的工作效率以及可以四象限运行和制动,其静特性已可以与直流电动机拖动系统相媲美。国际上许多国家交流电力拖动系统已进入工业实用化阶段,大有取代直流电力拖动系统的势头。但就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。直流电动机可逆调速系统数字化已经走向实用化,其主要特点是:(1)常规的晶闸管直流调速系统中大量硬件可用软件代替,从而简化系统结构,减少了电子元件虚焊、接触不良和漂移等引起的一些故障,而且维修方便;(2)动态参数调整方便;(3)系统可以方便的设计监控、故障自诊断、故障自动复原程序,以提高系统的可靠性;(4)可采用数字滤波来提高系统的抗干扰性能;(5)可采用数字反馈来提高系统的精度;(6)容易与上一级计算机交换信息;(7)具有信息存储、数据通信的功能;(8)成本较低。而且,直流调速系统在理论和实践上都比较成熟,从控制技术的角度来看,又是交流调速系统的基础,因此,应首先着重研究直流调速系统,这样才可以在掌握调速系统的基本理论下更好的对交流调速系统进行研究和探索1。1.3 研究双闭环直流调速系统的目的和意义转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统,采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。转速、电流双闭环直流调速系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。首先,应掌握转速、电流双闭环直流调速系统的基本组成以及静特性;然后,在建立该系统动态数学模型的基础上,从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用;第三,研究一般调节器的工程设计方法和经典控制理论的动态校正方法相比,得出该设计方法的优点;第四,应用工程设计方法解决双闭环调速系统中两个调节器的设计问题等等。通过对转速、电流双闭环直流调速系统的了解,使我们能更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷,通过对该系统不足之处的完善,提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个生产领域。1.4 课题研究的主要内容1.4.1 研究内容本设计以实现双闭环直流脉宽调速系统的仿真为目标,主要内容有:1、直流调速系统的概念、原理以及性能指标;2、电流、转速双闭环的理论分析及其数学模型的建立;3、PWM脉宽调制的优点及桥式可逆PWM变换器的简介;4、设计转速、电流调节器并对系统进行仿真等。1.4.2 论文安排1、理论部分:第1章和第2章主要介绍直流调速系统的概念、特点、原理和性能指标,以及直流调速系统的电流环、转速环的理论分析和调节器的设计。第3章主要介绍PWM脉宽调制原理和作用。2、设计部分:第4章详细介绍了双闭环直流调速系统中转速、电流调节器的参设计方法和参数选定。3、仿真部分:根据设计方法和参数的选定,运用MATLAB中的SIMULINK对双闭环直流脉宽调速系统进行仿真,并得出结论。第2章 闭环直流调速系统开环调速系统无法满足人们期望的性能指标,本章就闭环控制的直流调速系统展开讨论。简单介绍了直流调速系统的调速原理及性能指标和双闭环调速系统的分析,以及调节器的设计方法。2.1 直流调速系统的调速原理及性能指标2.1.1 直流调速系统的调速原理直流电动机具有良好的起、制动性能,宜于在广范围内平滑调速,所以由晶闸管-直流电动机(V-M)组成的直流调速系统是目前应用较普遍的一种电力传动自动化控制系统。它在理论上实践上都比较成熟,而且从闭环控制的角度看,它又是交流调速系统的基础1,7。从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统(伺服系统)、张力控制系统、多电机同步控制系统等多种类型,各种系统往往都是通过控制转速来实现的,因此,调速系统是最基本的电力拖动控制系统。直流电动机的转速和其它参量的关系和用式(2-1)表示 (2-1)式中 电动机转速;电枢供电电压;电枢电流; 电枢回路总电阻,单位为; 由电机机构决定的电势系数。在上式中,是常数,电流是由负载决定的,因此,调节电动机的转速可以有三种方法:(1)调节电枢供电电压;(2)减弱励磁磁通;(3)改变电枢回路电阻。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式最好。改变电阻只能实现有级调速;减弱励磁磁通虽然能够平滑调速,但调速的范围不大,往往只是配合调压方案,在基速(额定转速)以上做小范围的弱磁升速。因此,自动控制的直流调速系统往往以改变电压调速为主。2.1.2 直流调速系统的性能指标根据各类典型生产机械对调速系统提出的要求,一般可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响1,7。1、静态性能指标(1)调速范围生产机械要求电动机在额定负载运行时,提供的最高转速与最低转速之比,称为调速范围,用符号表示 (2-2)(2)静差率静差率是用来表示负载转矩变化时,转速变化的程度,用系数s来表示。具体是指电动机稳定工作时,在一条机械特性线上,电动机的负载由理想空载增加到额定值时,对应的转速降落与理想空载转速之比,用百分数表示为 (2-3)显然,机械特性硬度越大,越小,静差率就越小,转速的稳定度就越高。然而静差率和机械特性硬度又是有区别的。两条相互平行的直线性机械特性的静差率是不同的。对于图2-1中的线1和线2,它们有相同的转速降落,但由于,因此。这表明平行机械特性低速时静差率较大,转速的相对稳定性就越差。在1000r/min时降落10r/min,只占1%;在100r/min时也降落10r/min,就占10%;如果只有10r/min,再降落10r/min时,电动机就停止转动,转速全都降落完了。由图2-1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。图2-1 不同转速下的机械特性事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。2、动态性能指标(1)跟随性能指标在给定信号(或称参考输入信号)R(t)的作用下,系统输出量C(t)的变化情况可用跟随性能指标来描述。当给定信号表示方式不同时,输出响应也不一样。通常以输出量的初始值为零,给定信号阶跃变化下的过渡过程作为典型的跟随过程,这时的动态响应又称为阶跃响应。一般希望在阶跃响应中输出量c(t)与其稳态值的偏差越小越好,达到的时间越快越好。常用的阶跃响应跟随性能指标有上升时间,超调量和调节时间:a、上升时间在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值所经过的时间称为上升时间,它表示动态响应的快速性,见图2-2。图2-2 典型的阶跃响应过程和跟随性能指标b、超调量在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量: (2-4)超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。c、调节时间调节时间又称过渡过程时间,它衡量系统整个调节过程的快慢。原则上它应该是从给定量阶跃变化起到输出量完全稳定下来为止的时间。对于线性控制系统来说,理论上要到才真正稳定,但是实际系统由于存在非线性等因素并不是这样。因此,一般在阶跃响应曲线的稳态值附近,取的范围作为允许误差带,以响应曲线达到并不再超出该误差带所需的最短时间定义为调节时间,可见图2-2。(2)抗扰性能指标一般是以系统稳定运行中,突加负载的阶跃扰动后的动态过程作为典型的抗扰过程,并由此定义抗扰动态性能指标,可见图2-3。常用的抗扰性能指标为动态降落和恢复时间:a、动态降落系统稳定运行时,突加一定数值的扰动(如额定负载扰动)后引起转速的最大降落值叫做动态降落,用输出量原稳态值的百分数来表示。输出量在动态降落后逐渐恢复,达到新的稳态值,是系统在该扰动作用下的稳态降落。动态降落一般都大于稳态降落(即静差)。调速系统突加额定负载扰动时的动态降落称作动态降落。b、恢复时间从阶跃扰动作用开始,到输出量基本上恢复稳态,距新稳态值之差进入某基准量的范围之内所需的时间,定义为恢复时间,其中称为抗扰指标中输出量的基准值。实际系统中对于各种动态指标的要求各有不同,要根据生产机械的具体要求而定。一般来说,调速系统的动态指标以抗扰性能为主。图2-3 突加扰动的动态过程和抗扰性能指标2.2 电流、转速双闭环直流调速系统的理论分析2.2.1 双闭环调速的工作过程和原理双闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器,此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值,电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后,速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端产生的偏差信号将随时通过速度调节器、电流调节器来修正触发器的移相电压,使整流桥输出的直流电压相应变化,从而校正和补偿电动机的转速偏差。另外电流调节器的小时间常数,还能够对因电网波动引起的电动机电枢电流的变化进行快速调节,可以在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度更好地稳定于某一转速下运行1,5,7。2.2.2 双闭环直流调速系统的组成及其静特性1、双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图2-4所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。图2-4 转速、电流双闭环直流调速系统其中:ASR转速调节器;ACR电流调节器;TG测速发电机;TA电流互感器;UPE电力电子变换器;转速给定电压;转速反馈电压;电流给定电压;电流反馈电压。2、 双闭环直流调速系统的静特性分析图2-5 双闭环直流调速系统的稳态结构框图图2-5所示为双闭环直流调速系统的稳态结构框图。分析静特性的关键是掌握PI调节器的稳态特征,一般使存在两种状况:饱和输出达到限幅值,不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和,换句话说,饱和的调节器暂时隔断了输入和输出的联系,相当于使该调节环开环。当调节器不饱和时,PI的作用使输入偏差电压U在稳态时总为零。实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况1,5,7。(1)转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此,(2-5)(2-6)由第一个关系式可得:(2-7)从而得到图2-5所示静特性曲线的CA段。与此同时,由于ASR不饱和,可知,这就是说,CA段特性从理想空载状态的一直延续到。而,一般都是大于额定电流的。这就是静特性的运行段,它是一条水平的特性。(2)转速调节器饱和这时,ASR输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成了一个电流无静差的单电流闭环调节系统。稳态时:(2-8)其中,最大电流取决于电动机的容许过载能力和拖动系统允许的最大加速度,由上式可得静特性的AB段,它是一条垂直的特性。这种特性只适合于的情况,因为如果,则,ASR将退出饱和状态。双闭环调速系统的静特性在负载电流小于时表现为转速无静差,这时,转速负反馈起主要的调节作用,但负载电流达到时,对应于转速调节器的饱和输出,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内、外两个闭环的效果。然而,实际上运算放大器的开环放大系数并不是无穷大,因此,静特性的两段实际上都略有很小的静差,见图2-6中虚线。图2-6 双闭环直流调速系统的静特性3、各变量的稳态工作点和稳态参数计算由双闭环直流调速系统的稳态结构图可知,双闭环调速系统在稳态工作时,当两个调节器都不饱和时,各变量之间有以下关系: (2-9) (2-10) (2-11)上述关系表明,在稳态工作点上,转速是由给定电压决定,ASR的输出量是由负载电流决定的,而控制电压的大小则同时取决于和,或者说,同时取决于和。PI调节器输出量在动态过程中决定于输入量的积分,到达稳态时,输入为零,输出的稳态值与输入无关,而是由它后面环节的需要决定的。后面需要PI调节器提供多么大的输出值,它就能提供多少,直到饱和为止。鉴于这一特点,双闭环调速系统的稳态参数计算与单闭环有静差系统完全不同,而是和无静差系统的稳态计算相似,即根据各调节器的给定与反馈值计算有关的反馈系数。转速反馈系数: (2-12)电流反馈系数: (2-13)两个给定电压的最大值、由设计者给定,受运算放大器允许输入电压和稳压电源的限制。2.3 双闭环直流调速系统的数学模型和动态性能分析2.3.1 双闭环直流调速系统的数学模型的建立双闭环直流调速系统数学模型的建立涉及到可控硅触发器和整流器的相关内容。全控式整流在稳态下,触发器控制电压与整流输出电压的关系为: (2-14)其中:A整流器系数;整流器输入交流电压;整流器触发角;触发器移项控制电压;K触发器移项控制斜率。图2-7 双闭环直流调速系统的动态结构框图整流与触发关系为余弦,工程中近似用线性环节代替触发与放大环节,放大系数为: (2-15)绘制双闭环直流调速系统的动态结构框图如图2-7所示。2.3.2 起动过程分析双闭环直流调速系统突加给定电压由静止状态起动时,转速调节器输出电压、电流调节器输出电压、可控整流器输出电压、电动机电枢电流和转速的动态响应波形过程如图2-8所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退出饱和三种情况,整个动态过程就分成图中标明的、三个阶段。第一阶段是电流上升阶段。当突加给定电压时,由于电动机的机电惯性较大,电动机还来不及转动,转速负反馈电压,这时,很大,使ASR的输出突增为,ACR的输出为,可控整流器的输出为,使电枢电流迅速增加。当增加到(负载电流)时,电动机开始转动,以后转速调节器ASR的输出很快达到限幅值,从而使电枢电流达到所对应的最大值(在这过程中,的下降是由于电流负反馈所引起的),到这时电流负反馈电压与ACR的给定电压基本上是相等的,即 (2-16)式中,电流反馈系数。速度调节器ASR的输出限幅值正是按这个要求来整定的。第二阶段是恒流升速阶段。从电流升到最大值开始,到转速升到给定值为止,这是启动过程的主要阶段,在这个阶段中,ASR一直是饱和的,转速负反馈不起调节作用,转速环相当于开环状态,系统表现为恒流调节。由于电流保持恒定值,即系统的加速度为恒值,所以转速按线性规律上升,由知,也线性增加,这就要求也要线性增加,故在启动过程中电流调节器是不应该饱和的,晶闸管可控整流环节也不应该饱和。第三阶段是转速调节阶段。转速调节器在这个阶段中起作用。开始时转速已经上升到给定值,ASR的给定电压与转速负反馈电压相平衡,输入偏差等于零。但其输出却由于积分作用还维持在限幅值,所以电动机仍在以最大电流下加速,使转速超调。超调后,使ASR退出饱和,其输出电压(也就是ACR的给定电压)才从限幅值降下来,与也随之降了下来,但是,由于仍大于负载电流,在开始一段时间内转速仍继续上升。到时,电动机才开始在负载的阻力下减速,知道稳定(如果系统的动态品质不够好,可能振荡几次以后才稳定)。在这个阶段中ASR与ACR同时发挥作用,由于转速调节器在外环,ASR处于主导地位,而ACR的作用则力图使尽快地跟随ASR输出的变化。稳态时,转速等于给定值,电枢电流等于负载电流,ASR和ACR的输入偏差电压都为零,但由于积分作用,它们都有恒定的输出电压。ASR的输出电压为 (2-17)ACR的输出电压为 (2-18)由上述可知,双闭环调速系统,在启动过程的大部分时间内,ASR处于饱和限幅状态,转速环相当于开路,系统表现为恒电流调节,从而可基本上实现理想过程。双闭环调速系统的转速响应一定有超调,只有在超调后,转速调节器才能退出饱和,使在稳定运行时ASR发挥调节作用,从而使在稳态和接近稳态运行中表现为无静差调速。故双闭环调速系统具有良好的静态和动态品质。综上所述,双闭环调速系统的起动过程有以下三个特点:1、饱和非线形控制随着ASR的饱和与不饱和,整个系统处于完全不同的两种状态,在不同情况下表现为不同结构的线形系统,只能采用分段线形化的方法来分析,不能简单的用线形控制理论来笼统的设计这样的控制系统。图2-8 双闭环直流调速系统起动过程的电压、电流、转速波形2、转速超调当转速调节器ASR采用PI调节器时,转速必然有超调。转速略有超调一般是容许的,对于完全不允许超调的情况,应采用其他控制方法来抑制超调。3、准时间最优控制在设备允许条件下实现最短时间的控制称作“时间最优控制”,对于电力拖动系统,在电动机允许过载能力限制下的恒流起动,就是时间最优控制。但由于在起动过程、两个阶段中电流不能突变,实际起动过程与理想启动过程相比还有一些差距,不过这两段时间只占全部起动时间中很小的成分,无伤大局,可称作“准时间最优控制”。采用饱和非线性控制的方法实现准时间最优控制是一种很有实用价值的控制策略,在各种多环控制中得到普遍应用。2.3.3 动态抗干扰性分析一般来说,双闭环调速系统具有比较满意的动态性能,对于调速系统,最重要的动态性能是抗扰性能。主要是抗负载扰动和抗电网电压扰动。1、抗负载扰动由双闭环直流调速系统的动态结构图上可以看出,负载扰动作用在电流环之后,因此,只能靠转速调节器ASR来产生抗负载扰动的作用。在设计ASR时,应要求有较好的抗扰性能指标。2、抗电网电压扰动电网电压变化对调速系统也产生扰动作用。在图2-7所示的双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗扰性能大有改善。因此,在双闭环系统中,由电网电压波动引起的转速动态变化会小得多。2.4 调节器的工程设计方法2.4.1 PI调节器PI调节器的结构如图2-9所示1,2,3:图2-9 PI调节器结构由图可得: (2-19)PI调节器比例部分的放大系数;PI调节器积分时间常数。PI调节器的传递函数为: (2-20)2.4.2 调节器的设计方法为了保证转速发生器的高精度和高可靠性,系统采用转速变化率反馈和电流反馈的双闭环电路主要考虑以下问题:1、保证转速在设定后尽快达到稳速状态;2、保证最优的稳定时间;3、减小转速超调量。为了解决上述问题,就必须对转速、电流两个调节器的进行优化设计,以满足系统的需要。建立调节器工程设计方法所遵循的原则是:1、概念清楚、易懂;2、计算公式简明、好记;3、不仅给出参数计算的公式,而且指明参数调整的方向;4、能考虑饱和非线性控制的情况,同样给出简明的计算公式;5、适用于各种可以简化成典型系统的反馈控制系统。直流调速系统调节器参数的工程设计包括确定典型系统、选择调节器类型、计算调节器参数、计算调节器电路参数、校验等内容。在选择调节器结构时,只采用少量的典型系统,它的参数与系统性能指标的关系都已事先找到,具体选择参数时只须按现成的公式和表格中的数据计算一下就可以了,这样就使设计方法规范化,大大减少了设计工作量。2.4.3 型系统与型系统的性能比较 许多控制系统的开环传递函数可表示为 (2-21)根据中积分环节个数的不同,将该控制系统称为0型、型、型系统。自动控制理论证明,0型系统在稳态时是有差的,而型及型以上的系统很难稳定。因此,通常为了保证稳定性和一定的稳态精度,多用型、型系统,典型的型、型系统其开环传递函数为 (2-22) (2-23)典型型系统在动态跟随性能上可做到超调小,但抗扰性能差;而典型型系统的超调量相对要大一些,抗扰性能却比较好。接下来可用一个实例来说明这个问题。设被控对象的传递函数如式(2-24): (2-24)若欲将系统校正成型系统,则调节器仅仅是一个比例环节,若欲将系统校正成型系统,则调节器必须含有一个积分环节,并带有一个比例微分环节,以便消除被控对象的一个惯性环节,故调节器采用如式(2-25)的PI调节器。仿真结果如图2-10所示。从图中可以清楚地看到型系统、型系统的差别。这种差别可以作为调节器选择的原则。图2-10 型系统、型系统性能比较2.4.4 转速电流调节器结构的确定一般说来典型型系统在动态跟随性能上可以做到超调小,但抗忧性能差;而典型型系统的超调量相对要大一些而抗扰性能却比较好。图2-10很好地说明了这一点。基于此,在转速-电流双闭环调速系统中,电流环的一个重要作用是保持电枢电流在动态过程中不超过允许值,即能否抑制超调是设计电流环首先要考虑的问题,所以一般电流环多设计为型系统,电流调节的设计应以此为限定条件。至于转速环,稳态无静差是最根本的要求,所以转速环通常设计为型系统。在双闭环调速系统中,整流装置滞后时间常数和电流滤波时间常数一般都比电枢回路电磁小很多,可将前两者近似为一个惯性环节,取。这样,经过小惯性环节的近似处理后,电流环的控制对象是一个双惯性环节,要将其设计成典型型系统,同理,经过小惯性环节的近似处理后,转速环的被控对象形如式(2-22)。如前所述,转速环应设计成型系统,所以转速调节器也就设计成PI型调节器,如下式所示: (2-25)第3章 PWM脉宽调制直流脉宽变换器,或称直流PWM变换器,是在全控型电力电子器件问世以后出现的能取代相控整流器的直流电源。本章主要介绍脉宽调制的优越性和桥式可逆PWM变换器工作原理。3.1 PWM基本介绍自从全控型整流电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关控制方式,形成了脉宽调制变换器直流电动机调速系统,简称直流脉宽调速系统,或直流PWM调速系统。PWM系统在很多方面有较大的优越性:1、主电路线路简单,需用的功率器件少;2、开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;3、低速性能好,稳速精度高,调速范围宽,可达1:10000左右;4、若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗干扰能力强;5、功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;直流电源采用不控整流时,电网 效率因数比相控整流器高。由于上述优点,在中、小容量的高动态性能系统中,直流PWM调速系统的应用日益广泛4。3.2 脉宽调制变换器在干线铁道电力机车、工矿电力机车、城