2019年中考数学二轮复习真题演练:归纳猜想型问题.doc
-
资源ID:3978860
资源大小:799KB
全文页数:12页
- 资源格式: DOC
下载积分:16金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019年中考数学二轮复习真题演练:归纳猜想型问题.doc
二轮复习真题演练归纳猜想型问题一、选择题1(2018南平)给定一列按规律排列的数: ,则这列数的第6个数是()A B C D 1A2(2018重庆)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,则第(10)个图形的面积为()A196cm2B200cm2C216cm2D256cm22B3(2018呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需()根火柴A156B157C158D1593B4(2018重庆)下列图形都是由同样大小的棋子按一定的规律组成,其中第个图形有1棵棋子,第个图形一共有6棵棋子,第个图形一共有16棵棋子,则第个图形中棋子的颗数为()A51B70C76D814C5(2018济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2018次碰到矩形的边时,点P的坐标为()A(1,4)B(5,0)C(6,4)D(8, 3)5D6(2018济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;依此类推,则平行四边形AO4C5B的面积为()A cm2B cm2C cm2D cm26B二填空题7(2018沈阳)有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212请观察它们的构成规律,用你发现的规律写出第8个等式为 82+92+722=732782+92+722=7328(2018曲靖)一组“穿心箭”按如下规律排列,照此规律,画出2018支“穿心箭”是 89(2018三明)观察下列各数,它们是按一定规律排列的,则第n个数是 ,910(2018莱芜)已知123456789101112997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2018位上的数字为 710711(2018红河州)下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 42个实心圆114212(2018衡阳)观察下列按顺序排列的等式:a11,a2,a3,a4,试猜想第n个等式(n为正整数):an= 1213(2018遂宁)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为 6n+2136n+214(2018深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;按这样的规律下去,第6幅图中有 91个正方形149115(2018南宁)有这样一组数据a1,a2,a3,an,满足以下规律:a1,a2,a3,an(n2且n为正整数),则a2018的值为 -1(结果用数字表示)15-116(2018大庆)已知 ,依据上述规律,计算 +的结果为 (写成一个分数的形式)。1617(2018崇左)如图是三种化合物的结构式及分子式请按其规律,写出后面第2018种化合物的分子式 C2013H402817C2018H402818(2018聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么点A4n+1(n为自然数)的坐标为 (2n,1)(用n表示)18(2n,1)19(2018天水)观察下列运算过程:S=1+3+32+33+32012+32018 , ×3得3S=3+32+33+32018+32014 , -得2S=32014-1,S= 运用上面计算方法计算:1+5+52+53+52018= 1920(2018龙岩)对于任意非零实数a、b,定义运算“”,使下列式子成立:12=- ,21= ,(-2)5= ,5(-2)=- ,则ab= 2021(2018湖州)将连续正整数按以下规律排列,则位于第7行第7列的数x是 85218522(2018恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是 1712217123(2018常德)小明在做数学题时,发现下面有趣的结果:3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16根据以上规律可知第100行左起第一个数是 10200231020024(2018抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,-2)点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7,按此规律进行下去,则点P2018的坐标是 (2,-4)24(2,-4)25(2018湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上从内到外,它们的边长依次为2,4,6,8,顶点依次用A1、A2、A3、A4表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、均相距一个单位,则顶点A3的坐标是 ,A92的坐标是 (31,-31)25(0, ),(31,-31)-1)26(2018内江)如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,;按此作法继续下去,则点M10的坐标为 (884736,0)26(884736,0)27(2018荆州)如图,ABC是斜边AB的长为3的等腰直角三角形,在ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,如此下去,操作n次,则第n个小正方形AnBnDnEn 的边长是 2728(2018昭通) 如图中每一个小方格的面积为1,则可根据面积计算得到如下算式:1+3+5+7+(2n-1)= n2(用n表示,n是正整数)28n229(2018梅州)如图,已知ABC是腰长为1的等腰直角三形,以RtABC的斜边AC为直角边,画第二个等腰RtACD,再以RtACD的斜边AD为直角边,画第三个等腰RtADE,依此类推,则第2018个等腰直角三角形的斜边长是 )201329)30(2018本溪)如图,点B1是面积为1的等边OBA的两条中线的交点,以OB1为一边,构造等边OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是OBA的两条中线的交点,再以OB2为一边,构造等边OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边OBnAn的边OAn与等边OBA的边OB第一次重合时,构造停止则构造出的最后一个三角形的面积是 30 31(2018铜仁地区)如图,已知AOB=45°,A1、A2、A3、在射线OA上,B1、B2、B3、在射线OB上,且A1B1OA,A2B2OA,AnBnOA;A2B1OB,An+1BnOB(n=1,2,3,4,5,6)若OA1=1,则A6B6的长是 32313232(2018营口)按如图方式作正方形和等腰直角三角形若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,则第n个正方形与第n个等腰直角三角形的面积和Sn= 3233(2018牡丹江)如图,边长为1的菱形ABCD中,DAB=60°连结对角线AC,以AC为边作第二个菱形ACEF,使FAC=60°连结AE,再以AE为边作第三个菱形AEGH使HAE=60°按此规律所作的第n个菱形的边长是 )n-13334(2018嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为 6,小球P所经过的路程为 346,35(2018六盘水)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°,按上述方法经过4次旋转后,顶点O经过的总路程为 ,经过61次旋转后,顶点O经过的总路程为 35,解:如图,为了便于标注字母,且位置更清晰,每次旋转后不防向右移动一点,第1次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,路线长为;第2次旋转路线是以正方形的对角线长为半径,以90°圆心角的扇形,路线长为;第3次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,路线长为;第4次旋转点O没有移动,旋转后于最初正方形的放置相同,因此4次旋转,顶点O经过的路线长为;61÷4=151,经过61次旋转,顶点O经过的路程是4次旋转路程的15倍加上第1次路线长,即故答案分别是:,三解答题36(2018绍兴)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2,第n次平移将矩形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向平移5个单位,得到矩形AnBnCnDn(n2)(1)求AB1和AB2的长(2)若ABn的长为56,求n36解:(1)AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2,AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,AB1=AA1+A1A2+A2B1=5+5+1=11,AB2的长为:5+5+6=16;(2)AB1=2×5+1=11,AB2=3×5+1=16,ABn=(n+1)×5+1=56,解得:n=10 37(2018张家界)阅读材料:求1+2+22+23+24+22018的值解:设S=1+2+22+23+24+22012+22018,将等式两边同时乘以2得: 2S=2+22+23+24+25+22018+22014 将下式减去上式得2S-S=22014-1 即S=22014-1 即1+2+22+23+24+22018=22014-1请你仿照此法计算:(1)1+2+22+23+24+210(2)1+3+32+33+34+3n(其中n为正整数)37解:(1)设S=1+2+22+23+24+210,将等式两边同时乘以2得2S=2+22+23+24+210+211,将下式减去上式得:2S-S=211-1,即S=211-1,则1+2+22+23+24+210=211-1;(2)设S=1+3+32+33+34+3n,两边乘以3得:3S=3+32+33+34+3n+3n+1,下式减去上式得:3S-S=3n+1-1,即S=(3n+1-1),则1+3+32+33+34+3n=(3n+1-1)38(2018安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图117图2212图3317图44 猜想:在图(n)中,特征点的个数为 5n+2(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1= ;图(2018)的对称中心的横坐标为 38解:(1)由题意,可知图1中特征点有7个;图2中特征点有12个,12=7+5×1;图3中特征点有17个,17=7+5×2;所以图4中特征点有7+5×3=22个;由以上猜想:在图(n)中,特征点的个数为:7+5(n-1)=5n+2;(2)如图,过点O1作O1My轴于点M,又正六边形的中心角=60°,O1C=O1B=O1A=2,BO1M=30°,O1M=O1BcosBO1M=2×=,x1=;由题意,可得图(2)的对称中心的横坐标为(2×2)=2,图(3)的对称中心的横坐标为(2×3)=3,图(4)的对称中心的横坐标为(2×4)=4,图(2018)的对称中心的横坐标为(2×2018)=2018故答案为22,5n+2;,2018