欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    毕业设计(论文)2kw风光互补发电系统设计光伏发电部分.doc

    • 资源ID:3974683       资源大小:686.50KB        全文页数:41页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    毕业设计(论文)2kw风光互补发电系统设计光伏发电部分.doc

    摘 要进入二十一世纪,人类面临着实现经济和社会可持续发展的重大挑战,而能源问题日益严重。人类需要解决能源问题,实现可持续发展,只能依靠科技进步,大规模开发利用可再生能源和新能源。而太阳能和风能被看做是最具有代表性的新能源和可再生能源,由于风力发电和太阳能发电系统均受到外部条件的影响,光靠独立的风力或太阳能发电系统经常会难以保证系统供电的连续性和稳定性,因此,在采用风光互补的混合发电系统来进行相互补充,实现连续、稳定地供电。本设计重点针对小型风光互补发电系统中蓄电池充放电控制模块和逆变器模块进行了设计及仿真。设计针对目前市场上传统充电控制器对蓄电池的充放电控制不合理,同时保护也不够充分,使得蓄电池的寿命缩短这种情况,研究确定了一种基于单片机的太阳能充电控制器的方案。在太阳能对蓄电池的充放电方式、控制器的功能要求和实际应用方面做了一定分析,完成了硬件电路设计和软件编制并通过proteus仿真软件进行仿真,实现了对蓄电池的高效率管理。逆变环节采用PWM调制方式,控制芯片为PIC16F73,简化了驱动电路设计。软件设计中,采用瞬时电压反馈,增加了电路保护等功能,论文阐述了软件设计总体思想构架,给出了程序代码。最后,利用单片机仿真软件proteus对系统进行仿真并给出仿真原理图及仿真波形。关键词:风光互补;风能;太阳能;控制;Proteus仿真Abstract Entering the 21st century, human beings are facing to realize the sustainable development of economy and society, and energy problem becomes more and more serious. Only by relying on the progress of science and technology and the large-scale exploitation and utilization of renewable energy and new energy can human solve the problem of energy. And solar and wind power are considered the most representative of new and renewable energy, The power technology of solar energy and wind attack worlds attention. Because of wind power and solar power system under external conditions, and only by independent wind or solar power systems often hard to ensure the continuity and consistency of power system therefore, using hybrid power system of complementary scenery to complement each other, realize the continuous, stable power supply. This design mainly for small wind-light complementary system of battery charging and discharging control module and inverter module for the design and simulation. The conventional charge controller on the market today on the battery charge and discharge control is unreasonable, and its protection is also inadequate, which makes the battery life to shorten. To solve this problem, the design identifies a solar charge controller based on single chip solution. In the solar energy to battery charge and discharge means, the controller of the functional requirements and the practical application aspects ,making some analysis, completed the hardware circuit design and software development, to achieve the high efficiency of the battery management. In the inverter part ,the paper use PWM inverter link, and the control chip is PIC16F73,this makes the system simple. In the software design, the paper uses the transient voltage feedback and meanwhile, increase circuit protection function, the paper also elaborates the overall framework of software design and displays program code. Finally, the paper uses single chip computer simulation software the Proteus simulink the system and gives the simulation principle diagram and waveform.Keyword: Wind and PV hybrid; Wind power; Solar power; Control; Proteus simulation目录摘 要1Abstract21 绪论51.1能源问题51.2风能太阳能的概况51.3 风光发电的发展概况52 风光互补发电系统整体结构83 光伏发电介绍93.1太阳能光伏电池的原理93.2太阳能电池板的计算104 蓄电池充电控制器的设计134.1 系统层次原理图134.2 单片机最小系统144.2.1 STC89C52的简介144.2.2 单片机的最小系统及扩展电路144.3 充放电电路154.4光耦驱动电路164.5 A/D转换电路174.5.1 ADC0804的简介174.5.2 ADC0804外围接线电路194.6 LCD显示电路204.7 E2PROM数据存储电路214.8 串口通信电路224.9 太阳能充电控制器的软件设计254.9.1 系统主程序设计264.9.2 软件调试和仿真265 逆变主电路的设计305.1控制方法305.2控制芯片305.3PWM控制电路315.3.1PIC16F73供电电源315.3.2时序和死区电路315.3.3光耦隔离电路325.3.4电压反馈检测电路335.4PWM控制电路系统图335.5 逆变系统软件设计与仿真345.5.1 主程序的设计355.5.2 程序设计原理365.5.3 系统仿真36结论39致谢40参考文献41附录1 充放电控制源程序42附录2 PWM波形产生源程序531 绪论1.1能源问题能源是不仅仅是现代经济社会发展的基础,也是经济社会发展的重要制约因素。当前,包括我国在内的绝大多数国家都以石油和煤炭等矿物燃料为主要能源。随着矿物燃料的日益枯竭和全球环境的日益恶化,很多国家都在认真探索能源多样化的途径,积极开展新能源和可再生能源的研究开发工作。解决能源危机可以有如下三种办法:一是提高燃烧效率以减少能源消耗,实现清洁煤燃料以减少污染;二是开发新能源,积极利用可再生能源;三是开发新材料、新工艺,最大限度地实现实现节能。太阳能和风能被看作是最具有代表性的新能源和可再生能源,作为这两种能源的高级利用,太阳能发电和风力发电技术受到世界各国的高度重视。1.2风能太阳能的概况太阳能分布广泛,可自由利用,取之不经,用之不竭,是人类最终可以依赖的能源。而光伏发电技术是太阳能利用技术中最具有发展前景的方式之一。它具有无污染、无噪声、安全可靠、故障率低、维护简单、建设周期短等优点。它是今后可替代矿物燃料的战略性能源,又是当前边远地区能源供应的一种有效的补充。随着矿物燃料的逐渐消耗,太阳能光伏发电技术将越来越显示其重要性和发展潜力。风是地球上的一种自然现象,它是由太阳辐射造成地球表面受热不均引起的,引起大气层压力分布不均,以致空气流动所形成的动能称为风能。风能是太阳能的一种转换形式,是一种重要的自然能源,一起蕴藏量巨大、可以再生、分布广泛以及没有污染等优势而在各国发展迅速。全球的风能约为2.74×109WM,其中可利用的风能为2×107WM,比地球上可开发利用的水能总量还要大10倍。可以看出,太阳能发电和风力发电对于改善能源结构、推动生态环境建设,特别是对边远地区的生产、生活用电等诸多领域的发展将发挥积极的作用,具有广阔的市场前景。1.3 风光发电的发展概况光伏发电技术1839年,法国物理学家EdmondBecquerel意外的发现,用两片金属浸入溶液结构的付打电池在光照下会产生额外的电势,他将这种现象称为“光生付打效应(Photovoltaic Effect)”。1873年,英国科学家WilouzhbySmith观察到对光敏感的硒材料,并推断出在光的照射下硒导电能力的增加正比与光通量。1880年,Charles Ffitts 开发出以硒为基础的太阳能电池,以后人们即把能够产生光生付打效应的器件称为“光伏器件”。半导体PN结器件在阳光下的光电转换效率最高,通常称这类光伏器件为“太阳能电池(Solar Cell)”。1954年,贝尔实验室的科学家们第一次用晶体硅材料制成了光伏电池,光电转换效率高达4%。始于20世纪50年代的空间发展计划成为光伏发电技术的第一个主要应用对象,而且光伏技术的发展也成为整个空间技术发展计划的一部分,对光伏技术的发展起到了巨大的推动作用。今天,几乎所有的人造卫星都是靠光伏电池供电,包括通信卫星、军事卫星和科学家实验卫星。风能发电技术20世纪90年代中后期,在世界范围内形成了一股风力发电热,风力发电量增长速度居全球之首。全世界风力发电迅猛发展的原因主要有一下几个:第一,风力发电技术比较成熟。近20年来,美国、丹麦等国家投入了大量的人力、物力和财力研究可以商业运营的风力机,取得了突破性的进展。可利用率从原来的50%提高到98%,风能利用系数超了40%。由于采用计算机技术,实现了风机自诊断功能,安全保护措施更加完善,并且实现了单机独立控制、多机群控和遥控,完全可以无人职守。现代风力机技术是现代高科技的完善组合。目前,百千瓦级风机已经商品化,投入批量生产,兆瓦级机组也正小批量生产。第二,风力发电具有经济性。目前据美国能源部2000年统计,全世界风力发电机组的单位造价已降为1000美元/KW,单位发电成本为47美分/kWh;而火力发电单位造价为700800美元/KW,单位发电成本为58美分/kWh。第三,全球有丰富的风能资源。据统计全球风能潜力约为目前全球用电量的5倍。美国0.6%的陆地面积安装了风力发电机,便可以满足美国目前电力需求的20%。第四,政府的优惠政策。美国政府为风力机行业提供40%的信贷;德国政府也给风力机投资者提供资助,资助金额最高达单台风力机投资的60%;丹麦政府对风力机投资者提供资助,20世纪80年代初期为30%,以后逐年减少,到1990年资助完全取消。这些优惠政策,促进了风力商品化进程,这也是以上3个国家能成为世界上风电生产大国的一个主要原因。第五,风力发电是实现人类可持续发展的需要。随着现代工业的飞速发展,人类对能源的需求明显增加,而地球上可利用的常规能源日趋匮乏。据专家预测,煤炭还可以开采221年,石油还可以开采39年,天然气只能用60年。国际能源专家预言:21世纪是风力发电的世纪。绿色能源风力发电将为人类最终解决能源问题带来新的希望。风光互补发电上世纪八十年代许多人开始了风能、太阳能的综合利用的研究。丹麦的N.EBusch和Kllenbach(1981年)提出了太阳能和风能混合利用技术问题;美国的C.LAsPliden(1981)研究太阳能风能混合转换系统的气象问题;前苏联的N.sarin等根据概率原理,统计出近似的太阳能风能潜力的估计值;余华杨等(1987)也提出了太阳能、风能发电机的能量转换装置。尽管太阳能和风力发电有上述众多优势,但是作为独立供电设备二者均存在一定的局限性。独立的风力发电装置在无风天气下无法提供电能的连续供应,而太阳能发电装置在夜晚以及阴雨天等气候条件下无法保证电能的连续供应。采用风光互补发电技术后,可以有效解决单一发电不连续问题,保证基本稳定的供电。我国属季风气候区,一般冬季风大,太阳辐射强度小;夏季风小,太阳辐射强度大。同时大部分地区正午太阳光强的时候一般没有风,而在夜间没有太阳光照的时候风力则相对较强。风和光在时间上的互补性使得风光互补发电技术在保障供电连续性上有重大意义,风光互补发电系统具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。因而风光互补发电技术正在得到广泛地应用。2 风光互补发电系统整体结构系统结构图如图1所示。该系统是集风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。太阳能电池 风力发电机微机控制系统 逆变器蓄电池图1 系统框图从图1中我们可以看出,它的主要组成设备有:风力发电机:风机采用具有特别适合大多内陆地区低风速、时发电特性好、发电量大的特点。具有机械、电子刹车装置,可以确保在高风速时,风机转速稳定控制在安全可靠的范围内,使最高输出电压成为安全可控的电压。采用12V/150W风力发电机,当风力3m/s工作,10m/s风速时达到额定150W功率。太阳能光电池板:采用100W/14V ,0.6的硅光电池,它能将太阳能转化为电能,属于一种半导体元件,它的特点:它是转换效率高达15%的单晶硅太阳能电池板。具有抗风、防潮、工作稳定、无需维护等特点。铅酸蓄电池:蓄电池的选择要求:重量轻、体积小、能量转换率高、自放电慢、充放电循次数多(即使用寿命长)等。其次,还有些特殊要求如低温时能大电流放电、维护简单或无需维护、自放电(析氢)特别慢等。微机控制系统:微机控制系统是整个设计的核心内容。它是整个系统安全运行的基本保证。另外本系统受应用环境的要求,本身就要求实现免维护。所以无论从硬件系统还是软件系统都要对系统有保护作用。逆变器:逆变系统是把蓄电池中的直流电变成标准的220V交流电,保证交流电在设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;在逆变器的电路结构形式上,主要是工频变压器和高频变压器两种形式。对一个风光发电系统而言,逆变器是一种电力电子设备,抗过载,抗冲击的能力要相对弱一些,是最易出故障的单元。 3 光伏发电介绍3.1太阳能光伏电池的原理太阳能光伏电池(简称光伏电池)用于把太阳的光能直接转化为电能。目前世界各国正在研究的太阳电池主要有单晶硅、多晶硅、非晶硅太阳电池。在能量转换效率和使用寿命等综合性能方面,单晶硅和多晶硅电池优于非晶硅电池。多晶硅比单晶硅转换效率略低,但价格更便宜。另外,还有其它类型的太阳电池。太阳能电池的能量转换是应用P-N结的光伏效应(Photovoltaic Effect)。首先对P-N结二极管做一简单说明。如图3-1所示,为一理想的P-N结二极管的电流-电压(I-V)特性图,其对应的方程式如下: (1)Ipn,Vpn:P-N结二极管的电流及电压k:波尔兹曼常数(Boltzmann Constant:1.38×10-23J/K)q:电子电荷量(1.602×10-19库仑)T:绝对温度(凯氏温度K摄氏温度273度)Is:等效二极管的逆向饱和电流VT:热电压(Thermal Voltage:25.68mV)太阳能电池将太阳光能转换为电能是依赖自然光中的的量子-光子(Photons),而每个光子所携带的能量为Eph: (2)h:普郎克常数(Planck Constant:4.14×10-15eV·S)c:光速(3×108m/s):光子波长图3-1P-N结二极管I-V特性图但并非所有光子都能顺利地通过太阳能电池将光能转换为电能,因为在不同的光谱中光子所携带的能量不一样。当光子所携带的能量大于禁带(Band Gap)能量时,电子由价电带(Valence Band)跃迁至导电带(Conduction Band)而产生所谓的“电流”,所以当光子所携带的能量若大于禁带能量时,便可以通过光电子转换成电能。当入射太阳光的能量大于硅半导体的禁带能量时,太阳光子照射入半导体内,把电子从价电带激发到导电带,从而在半导体内部产生了许多“电子-空穴”对,在内建电场的作用下,电子向N型区移动,空穴向P型区移动,这样,N区有很多电子,P区有很多空穴,在P-N结附近就形成了与内建电场方向相反的光生电场,它的一部分抵消了内建电场,其余部分则使P区带正电,N区带负电,于是在N区与P区之间产生了光生伏打电动势,这就是所谓的“光生伏打效应”。如果位太阳电池开路,即组成电池回路中,负载电阻为无穷大,则被P-N结分开的电子和空穴,就会全部积累在P-N结附近,于是出现了最大光生电动势,它的数值即为开路电压,记作Voc。如果把太阳电池短路,即回路负载电阻为零,则所有P-N结附近的电子与空穴,由结的一边,流经外电路到达结的另一边,产生了最大可能的电流,即短路电流记作ISC。太阳能电池相当于具有与受光面平行的极薄P-N结的大面积的等效二极管,因此可以假设太阳能电池为一个二极管与太阳光电流发生源所并联的等效电路,如图3-2所示。图3-2 太阳能电池的理想状态等效电路3.2太阳能电池板的计算硅太阳能发电板容量是指平板式太阳能板发电功率WP。太阳能发电功率量值取决于负载24h所能消耗的电力H(WH),由负载额定电源与负载24h所消耗的电力,决定了负载24h消耗的容量P(AH),再考虑到平均每天日照时数及阴雨天造成的影响,计算出太阳能电池阵列工作电流IP(A)。由负载额定电源,选取蓄电池公称电压,由蓄电池公称电压来确定蓄电池串联个数及蓄电池浮充电压VF (V),再考虑到太阳能电池因温度升高而引起的温升电压VT(v)及反充二极管P-N结的压降VD(V)所造成的影响,则可计算出太阳能电池阵列的工作电压VP(V),由太阳电池阵列工作电源IP(A)与工作电压VP(V),便可决定平板式太阳能板发电功率WP,从而设计出太阳能板容量,由设计出的容量WP与太阳能电池阵列工作电压VP,确定硅电池平板的串联块数与并联组数。太阳能电池阵列的具体设计步骤如下:计算负载24h消耗容量P。P=H/V()V负载额定电源选定每天日照时数T(H)。计算太阳能阵列工作电流。IP=P(1+Q)/T()Q按阴雨期富余系数,Q=0.211.00确定蓄电池浮充电压VF。镉镍()和铅酸()蓄电池的单体浮充电压分别为1.41.6V和2.2V。太阳能电池温度补偿电压VT。VT=2.1/430(T-25)VF()计算太阳能电池阵列工作电压VP。VP=VF+VD+VT()其中VD=0.50.7,约等于VF太阳电池阵列输出功率平板式太阳能电板。WP=IP×UP()根据VP、WP在硅电池平板组合系列表格,确定标准规格的串联块数和并联组数。太阳电池阵列的伏安特性如图5。由图可知,该伏安特性曲线具有强烈的非线性。太阳电池阵列的额定功率是在以下条件下定义的:当日射S=l000W;太阳电池温度T=25;大气质量AM=1.5时,太阳电池阵列输出的最大功率便定义为它的额定功率。太阳电池阵列额定功率的单位为“峰瓦”,记以“WP”。当日射S<1000W时。图3-3 太阳电池阵列的伏安特性曲线温度和日照强度的变化对太阳电池的伏安特性都有影响,在仅改变日照强度而保持其它条件(如太阳电池温度和大气质量等)不变的情况下。计算出每天消耗的瓦时数(包括逆变器的损耗): 逆变器的转换效率为90,则当输出功率为100W时,则实际需要输出功率应为100W/90=111W;若按每天使用8小时,则耗电量为111W*8小时=888Wh。按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为888Wh/6h/70%=210W。其中70是充电过程中,太阳能电池板的实际使用功率。4 蓄电池充电控制器的设计在整体方案的指导下,依据工程设计的常见思路,本论文从硬件电路设计和软件设计两个方面入手,运用模块化的设计方法去进行控制器的设计。硬件电路主要由以下几部分组成:单片机最小系统、充放电电路、光耦驱动电路、A/D转换电路、LCD显示电路、E2PROM数据存储电路、串口通信电路等。下面先从系统层次原理图入手,对系统原理进行详细的分析,然后再对具体电路地进行一一介绍。4.1 系统层次原理图系统层次原理图如图4-1所示,电路设计以STC89C52单片机作为主控芯片构成控制电路模块对整个电路控制。首先采用并联分压方式对蓄电池电压采集后,送到AD模块中的A/D转换器进行转换得到一个数字信号的电压值,再将此信号送入到控制模块中单片机进行处理;然后在软件程序控制下,单片机输出控制信号送到充放电模块中,经光耦驱动电路来控制MOSFET。控制MOSFET管导通的方式是脉冲宽度调制(PWM),根据载荷变化来调制MOSFET管栅的偏置,达到实现开关功能。图 4-1 系统原理图最后通过通信模块实现数据的传送和保存。串口通信模块采用MAX232芯片进行TTL电平和RS-232电平之间的转换,加入串口的目的主要是使控制器具有远程通信或远程监控功能,同时方便将每天的异常状态数据记录下来,供工作人员查看。数据存储电路模块,使得当电压出现异常时,让蜂鸣器报警,同时把异常电压值通过I2C总线存放在E2PROM中,作为以后分析使用。4.2 单片机最小系统4.2.1 STC89C52的简介STC89C52是一种低功耗、高性能CMOS 8位微控制器,具有8K在系统可编程Flash存储器。使用STC公司高密度非易失性高加密性存储器技术制造,与工业80C51产品指令和引脚完全兼容。在芯片内部,拥有很高频率8位CPU和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。STC89C52具有以下标准功能:8k字节Flash,256字节RAM,32位I/O 口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,STC89C52具有低功耗设计,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。而且STC89C52的工作频率很宽,可以在035MHz之间选择,芯片具有超强抗干扰性,加密性强。4.2.2 单片机的最小系统及扩展电路单片机是系统的主控芯片,为了使整个电路得到很好的控制,首先必须构建最小系统是单片机可以工作起来。本设计单片机最小系统扩展电路包括上电复位电路,时钟电路,工作指示灯和蜂鸣器报警电路等。(1)时钟电路单片机内部有一个用于构成振荡器的高增益反相放大器,此放大器的输入端和输出端分别是引脚XTAL1和XTAL2,在XTAL1和XTAL2上外接时钟源即可构成时钟电路,CPU的所有操作均在时钟脉冲同步下进行。片内振荡器的振荡频率非常接近晶振频率,一般多在1.2MHz12MHz之间选取。时钟电路如图4-2所示。电路中C6、C7是反馈电容,其值在5pF30pF之间选取,本电路选用的电容为30pF,晶振频率为11.0952MHz。 图 4-2 时钟电路 图 4-3 复位电路(2)复位电路复位是单片机的初始化操作。其主要功能是把PC初始化为0000H,使单片机从0000H单元开始执行程序。除了进入系统的正常初始化之外,当由于程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需按复位键重新启动。单片机的复位电路如图4-3所示。本系统采用的是上电+电平按钮复位,上电复位是通过外部复位电路的电容充电来实现的。按钮复位是当按钮按下后,电源通过电阻R14施加到复位端上,实现单片机复位。复位电路虽然简单,但其作用非常重要。一个单片机系统能否正常运行,首先要检查是否能复位成功。初步检查可用示波器探头监视RST引脚,按下复位键,观察是否有足够幅度的波形输出(瞬时的),还可以通过改变复位电路电阻和电容值进行实验。(3)工作状态指示灯电路本设计可以时刻检测蓄电池电压,为了更好的进行监控,要对整个电路的工作状态进行指示,这是很有必要的。工作状态指示灯电路如图4-4所示。其中LED1为正常充电指示灯,LED2为过压指示灯,LED3为欠压指示灯。串联的电阻的目的是为了限制通过发光二极管的电流太大而将其烧毁。 图 4-4工作状态指示灯电路图 4-5 蜂鸣器报警电路(4)蜂鸣器报警电路报警电路采用蜂鸣器来发出报警声音,由于STC89C52输出引脚的驱动能力较弱,所以蜂鸣器要加三极管进行驱动。在对蓄电池电压实时监测的过程中,一旦发现检测电压值连续超出阈值范围,便启动自身报警电路,即当电压超过程序设定的最高值或最低值时,单片机的P2.6引脚(beep端)输出低电平,三极管随之导通,驱动蜂鸣器发出报警信号。蜂鸣器报警电路图如图4-5所示。4.3 充放电电路充放电电路如图4=6所示,电路由防反充二极管D1、滤波电容C4和C5、稳压管D2、续流二极管D3、MOSFET管Q1和Q2等构成。二极管D1是为了防止反充,当阴天或晚上蓄电池的电压高于太阳能电池板的电压时,D1就生效,可以防止蓄电池电流流向太阳能电池板。分析可知,通过控制MOSFET管闭合和断开的时间(即PWM脉冲宽度调制),就可以控制输出电压。所使用的MOSFET是电压控制单极性金属氧化物半导体场效应晶体管,所需驱动功率较小。而且MOSFET只有多数载流子参与导电,不存在少数载流子的复合时间,因而开关频率可以很高,非常适合作控制充放电开关。设计中采用IRL2703- N沟道MOSFET管,N沟道MOSFET的导通电压Vth>0。当光耦U2断开时,由于Q1的G极电压接近蓄电池电压,S极是接地,使得Vgs>0,当G极电压达到一定值时,Q1导通。电容C4是太阳能电池板输出电压滤波,使得更稳定地给蓄电池充电。电容C5是对蓄电池输出电压进行滤波,以保证负载供电电路的稳定性。图中稳压管D2用来对蓄电池进行稳压作用。当用户将蓄电池反接至控制器时,续流二极管D3可以进行续流,从而保护控制器不被毁坏。图 4-6 充放电电路按程序设计当检测到蓄电池的电压低于12V,充电模式为均充,Q1为完全导通状态,也就是导通的脉冲占空比最大;当检测到蓄电池的电压在12V-14.5V,充电模式为浮充,Q1导通与不导通的占空比例变小,;当检测到蓄电池的电压等于15V左右,Q1截止使充电停止,同时Q2也关闭来关断负载。当检测到蓄电池的电压低于10.8V,Q2关闭停止放电,关断负载来实现欠压关断。4.4光耦驱动电路为了增加系统的可靠性,本设计用光电耦合器实现单片机控制电路和充放电电路的隔离。光耦驱动电路如图4-7所示。M0S管Q1控制着充电电路,当充电控制信号PWM为低电平时,光耦内部的发光二极管的电流近似为零,右侧三极管不导通,输出端两管脚间的电阻很大,相当于开关“断开”,输出端K1被抬高,电阻R9右侧被稳压管D2稳压到12V左右,MOSEFT的Vgs>0,MOS管Q1开启,太阳能极板开始对蓄电池充电;当充电控制器信号为高电平时,光耦内部的发光二极管发光,三极管导通,输出端两管脚间的电阻变小,相当于开关“接通”,此时从U2输入的电压经光耦流向接地端,K1处的电压接近为零,MOSEFT的Vgs<0,Q1截止,充电电路关断。这就是充电电路原理。M0S管Q2控制着放电电路,其原理与Q1相似。 图4-7 光耦驱动电路4.5 A/D转换电路本系统设计的STC89C52单片机没有内置的A/D转换模块,因此需要先采集蓄电池的电压,然后经A/D转换才可接入单片机。市场中集成的A/D转换器品种很多,选用时需要综合考虑各种因素进行选取。一般逐次比较型A/D转换器用到较多,本设计采用8位并行A/D转换器芯片ADC0804。因为蓄电池电压的采集转换在系统中极为重要,所以下面对所选ADC0804芯片及在本系统中是典型连接电路予以介绍。4.5.1 ADC0804的简介AD转换就是模数转换,顾名思义,就是把模拟信号转换成数字信号。AD转换器最主要的技术参数是转换速度和转换精度,由于逐次比较型兼有并行A/D转换器转换速度高和双积分型转换精度高的优点,所以得到普遍应用。ADC0804就是这类集成A/D转换器。ADC0804 为一只具有20引脚并行8位CMOS工艺逐次比较型的集成A/D 转换器, 其规格如下: (1) 高阻抗状态输出,分辨率:8 位(0255)(2) 存取时间:135 us ;转换时间:100 us(3) 总误差:正负1LSB(4) 工作温度:0度70度; (5) 模拟输入电压范围:0V5V (6) 参考电压:2.5V;工作电压:5V (7) 输出为三态结构,可直接连接在数据总线上。ADC0804引脚图如图4-8所示,其各个引脚的功能: 芯片片选信号输入端,低电平有效,一旦有效,表明A/D转换器别选中,可启动工作。外部读取转换结果的控制输出信号。为 1 时,DB0DB7 处理高阻抗: 为 0 时,数字数据才会输出。用来启动转换的控制输入,相当于 ADC 的转换开始(=0 时),当 由 1变为 0时,转换器被清除:当 回到 1时,转换正式开始。 图 4-8 ADC0804引脚图CLK IN时钟信号输入端CLK R:内部时钟发生器的外接电阻端,与CLK配合可有芯片自身产生时钟脉冲,其振荡频率为 1/(1.1RC) 中断请求信号输出,端,低地平动作.,表明本次转换已完成。VIN(+) VIN(-) 差动模拟电压输入。输入单端正电压时, VIN(-)接地:而差动输入时, 直接加入 VIN(+) VIN(-). AGND,DGND模拟信号以及数字信号的接地. VREF/2参考电平输入,决定量化单位。 DB0DB7三态特性数字信号输出端. VCC: 电源供应以及作为电路的参考电压. 4.5.2 ADC0804外围接线电路(1)电压采集电路 如图4-9所示,电压采集电路使用两个串联的电阻,大小比例为2:1,然后并联在需要检测的电压两端,从两个电阻中间采集电压。由分压公式得出采集的电压为ADIN,当蓄电池充满电时电压大概为14.5V,计算出采集到的电压为4.8V,符合A/D转换芯片的ADC0804的输入值。图 4-9 电压采集电路(2)ADC0804构成的典型A/D转换电路图 4-10 A/D转换电路按照芯片手册中ADC0804的典型接法,系统中设计的A/D转换电路如4-10所示。单片机的P2.7引脚,用来实现片选;、分别接单片机的P3.6和P3.7引脚,进行读写控制;CLK、CLKR、GND之间用电阻和电容构成RC振荡电路,用来给ADC0804提供工作所需的脉冲。蓄电池的电压采集信号ADIN从6脚引入,在内部采集转换后,从数字输出端输出到单片机的P1口,通过读P1口数据,便可以得到蓄电池的电压,实现实时在线检测。4.6 LCD显示电路液晶具有体积小、功耗低,显示清晰的优点,所以比较适合作显示使用。为了更好的显示电压值,同时扩展自己学习芯片的能力,本设计用液晶1602来显示蓄电池的电压值。在使用1602之前,我们首先查阅其使用手册,对其进行一定的了解。从芯片手册中,可以得到1602液晶的主要技术资料,如表4-1所示,通过此表我们可以知道1602工作电压和显示容量,可以验证设计选择的是否合适。表 4-1 1602的主要技术参数显示容量 162个字符 芯片工作电压 4.55.5V 工作电流 2.0mA(5.0V)模块最佳工作电压 5.0V 字符尺寸 2.954.35(WH)mm显然,1602液晶可以满足要求,接下来介绍其各个引脚的功能,为后面设计电压显示电路做准备。1602引脚功能如表3-2所示。表 4-2 1602引脚功能表 引脚符 号名 称功 能1Vss接地0V2VDD电路电源5V±10%3VO液晶显示对比度调节端用于调节对比度4RS寄存器选择信号H:数据寄存器 L:指令寄存器5R/W读/写信号H:读         L:写6E片选信号下降沿触发,锁存数据7-14DB0-DB7数据线数据传输图 4-11 电压显示电路根据1602的技术参数和引脚功能, 1602与单片机连接构成的电压显示电路如图4-11所示。EN使能端接单片机的P2.2引脚,用来实现片选;RS接单片机P2.0引脚,进行数据和命令选择;R/W接单片机P2.1引脚,进行读写控制; 为防止直接加5V

    注意事项

    本文(毕业设计(论文)2kw风光互补发电系统设计光伏发电部分.doc)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开