欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    毕业论文(设计)基于GPRS 的滑坡地质灾害远程监测.doc

    • 资源ID:3974239       资源大小:212KB        全文页数:9页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    毕业论文(设计)基于GPRS 的滑坡地质灾害远程监测.doc

    基于GPRS的滑坡地质灾害远程监测作者:文艺 迟永滨 李吉春 原健钟    转贴自:微计算机信息    摘要:提出了基于GPRS 无线传输的滑坡地质灾害远程监测终端系统的方案,根据实际功能需求设计了以单片机C8051F040 为控制核心的各个功能模块,介绍了监测终端系统中的GPRS 无线传输技术。关键词:GPRS ;滑坡;远程监测终端1、引言我国是一个地质灾害多发的国家,现在国内大部分地区的滑坡现场监测手段主要还是应用传统的人工巡回测试、记录和资料处理。需派技术人员值班守卫,需要大量人力资源及资金。此外,灾害发生点大多地形险要,技术人员现场工作缺乏人身安全保障,且效率低【1-2 】。GPRS(General Packet Radio Service) 是通用分组无线业务的简称,即是在现有GSM (Global System For Mobile )系统上发展出来的一种新的分组数据承载业务。GPRS 通过在GSM 网络中引入分组交换的功能实体,以完成用分组方式进行的数据传输,传输速率快,同时支持IP 和X.25 两种分组数据网的协议。GPRS 系统也支持移动用户利用分组数据移动终端接入Internet 或其它分组数据网络。由于GPRS 网络具有网络接入速度快;能与现有数据网建立无缝连接;支持中高速率的数据传输;适时在线,按流量计费的特点【3-4 】。所以现在已被应用到滑坡地质灾害实时监测系统等众多领域中。滑坡远程监测终端系统是整个地质灾害无线实时预警监测系统的基础及核心部分。基于GPRS 无线传输的滑坡地质灾害远程无线实时预警监测系统由滑坡现场多点数据采集局域网系统、无线公用网络和远程监测主机构成。 2、系统总体结构监测终端系统在整个系统中所起到的作用是“上传下达”:将传感器节点传送来的数据进行显示、保存、打包并通过无线公网发送到监测主机系统上。同时,监测终端更需要具有适合野外作业的特点,有良好的抗干扰性能和抗雷电、防水等功能,且功耗尽可能低。 由于监控地点的离散性,系统硬件系统采用星型结构,即系统由一个主控中心和多个实时监控点组成。监测终端对多个监控点实现实时控制、数据采集和GPS 卫星定位,现场采用作者简介:文艺,男,硕士在读。液晶屏对数据进行显示,并通过键盘实现人机交互,同时将监控数据通过GPRS 无线传输方式传送给监控中心。 2.1、监测终端总体设计根据实际的功能需求和现场条件,监测终端实现所需硬件功能模块结构如图1 所示:   2.2、硬件实现 由于实时监控点的分散,主控中心必须通过CAN 总线或RS485 总线实现对监控点数据采集的轮巡,对测控地点进行GPS 全球定位,实现数据的GPRS 无线传输。由于低功耗的需要,整个主控板总体可采用3.3V 低电压设计,同时对外设实行电源控制,并在现场提供友好的人机交互功能。这里着重介绍系统核心和GPRS通信等接口部分。 2 2.1、系统核心的选择 综合考虑系统低功耗的要求,系统需要具备高速的处理速度,完善的外设功能,故采用Silicon Laboratories 公司的C8051F040 单片机作为系统核心。C8051F040 在指令集上和传统MCS-51 完全兼容,并新增了一些外设,使得集成度更高,运行速度更快,更适合于实际中的应用【5】。 系统核心C8051F040 利用SJA1000T 外部CAN 控制器实现对外部CAN 收发器的控制,结合内建的两个串行口和RS485、RS232 收发器实现信息的传输,由内部的A/D 转换接口实现对外部电压的监测,通过自身的I/O 口实现对外设的片选和读写控制。2.2.2、GPRS通信 选用内置TCP/IP 协议的GPRS 无线通信模块G200。该模块利用串口通信通过GPRS 网络进行通信,它的最大优点是与AT 响应有关的操作指令和与网络的信息交换都是在G200 模块内部自动完成。GPRS 模块上电后,自动登录到GPRS 网络,并长期附在网络上,不需要拨号上网的时间,具有很高的实时性。使用GPRS 模块组成点对多点的通信系统的示意图如下图2 所示: 当主设备发送数据给GPRS主模块时GPRS模块将信号发送到GPRS网络中,主设备必须指明数据的目的地址,上图中的网络才能选择数据传送的路由,处理及传送这一组数据。网络将这一组数据传送到目的GPRS从模块后,目的GPRS模块将这一数据传送给连接的从设备。 GPRS模块与上位机间的通信是靠串口连接的。串口的数据传输格式分为格式传输和透明传输两种。此外,GPRS模块支持RS232、RS485、和TTL电平接口标准。 在本监测终端系统中,采用多点GPRS系统通讯,通讯架构采用主从问答方式通讯,主机通过分时的方式依次获得从机采集数据。主机是PC机,通过COM串口控制主GPRS模块向各个从机发送控制命令并获得各个从机的数据;从机是单片机C8051F040,通过RS232接口控制从GPRS模块来接收主机的命令,返回采集到的数据。 2.2.3、其它硬件功能模块CAN 总线通信中,除采用内建的CAN 控制器外,添加了SJA1000 的总线制的CAN 控制器。GPS 模块支持RS232 电平接口标准与系统核心通讯;系统采用数字温度传感器DS18B20 来实现对环境温度的检测;系统的主体电压+3.3V 由LD1117 系列变压器提供;外部电压通过MPUC8051F040 内建的A/D 转换电路实现检测。 3、系统软件实现该监测终端系统主要是通过GPRS 无线传输和CAN 总线通信分别来实现其“上传下达”的作用。下面将简要介绍该系统主要软件功能模块的分析,软件全部采用C 语言编写。 1 1、主循环 1、显示主界面; 2、等待按键进入相应的界面; 3、将采集数据存入相应的缓冲区;  3.2、系统初始化  系统初始化分为两部分:全局变量初始化和硬件初始化。系统全局变量初始化包括CAN总线、GPRS、GPS 等全局变量;硬件初始化包括看门狗、总线配置、串口通讯、所有外部中断等初始化。 2 模块通讯协议及中断服务程序 GPRS 中断服务程序是处理GPRS 模块的接收和发送程序。本中断服务程序主要完成向上的数据通讯。GPRS模块串口通讯参数:波特率9600,数据位8,停止位1,校验位无。 主GPRS 模块实现与上位机通信,采用格式传输。其串口通信数据格式为:  目的站点编号:当数据为发送数据时为数据的目的地址,当数据为接收数据时为数据的源地址。传输数据时控制字节为01H,其余为响应传输。在响应传输情况下,若控制字节为FDH 时,模块已开始工作;若为FAH 时,数据已经成功发送;若为FCH 时,数据发送失败;若为FFH 时,模块连接GPRS 网络失败。 从GPRS 模块通过RS232 接口与单片机通信,采用透明传输。其通讯协议和步骤为: 1、串口初始化并开启串口中断,串口接收数据,首先判断是否为D7,若为D7,则继续采用查询方式连续接收2 字节,否则退出中断。如果超过300ms 读不到数据,退出中断。然后判断接收的2 字节数据是否为FDH,01H,若是则网络连接正常,否则,退出中断。2、采用先中断,后查询的方式。若等待超时,则退出中断。 若接收到控制字节为EBH, 90H,55H,11H,00H;发送EBH,90H,55H,00H;退出中断。若接收到控制字节为EBH,90H,55H,22H,xxH,xx 为01 时,发送1 号节点采集数据;xx 为02 时,发送2 号节点采集数据;xx 为03 时,发送3 号节点采集数据,退出中断。具体通信数据格式如下: 3.4、其它 GPS 中断服务程序是处理GPS 模块的数据解析和接收;CAN总线通信程序处理系统核心与CAN 总线节点模块的通讯。 4、结束语本系统能实现远程实时的监测控制与预报,便于决策部门和专家在异地随时观看地质灾害现场的动态监测结果。和传统的人工现场监测相比,GPRS 无线通信具有很高的灵活性,且时时在线、高速传输、可靠性好等优点。目前,该技术已经投入到监测工程的实际应用中,并取得了良好效果。本文创新点: 1、本文结合实际项目,将GPRS 数据传输技术应用在滑坡地质灾害远程监测终端系统中; 2、在系统调试中,从供电、防雷、防水、防潮等方面入手,应用多项软硬件抗干扰技术来提高整个系统的可靠性,提高了系统的适应野外工作环境的能力。 参考文献   1 曹修定.滑坡的远程实时监测控制与数据传输J.中国地质灾害与防治学报,2002,13(3):61-62.   2 韩永温,冯建华.数据无线传输技术在地质灾害监测中的应用J.勘察科学技术,2007,(5),43.   3 陈博通,金星,马亮.GPRS 在水源地控制系统中的应用J.微计算机信息,2007,23(11-1),5-6.   4 钟章队等编著,GPRS通用分组无线业务,北京:人民邮电出版社,2001.   5 万光毅,孙九安,蔡建平等编著.SoC单片机实验、实践与应用设计(基于C8051F 系列), Editor's note: Judson Jones is a meteorologist, journalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoes to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will always wonder what it was like to huddle around a shortwave radio and through the crackling static from space hear the faint beeps of the world's first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and the first space shuttle take off for the stars. Those events were way before my time.As a kid, I was fascinated with what goes on in the sky, and when NASA pulled the plug on the shuttle program I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As a meteorologist, I've still seen many important weather and space events, but right now, if you were sitting next to me, you'd hear my foot tapping rapidly under my desk. I'm anxious for the next one: a space capsule hanging from a crane in the New Mexico desert.It's like the set for a George Lucas movie floating to the edge of space.You and I will have the chance to watch a man take a leap into an unimaginable free fall from the edge of space - live.The (lack of) air up there Watch man jump from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watched the balloons positioned at different altitudes in the sky to test the winds, knowing that if they would just line up in a vertical straight line "we" would be go for launch.I feel this mission was created for me because I am also a journalist and a photographer, but above all I live for taking a leap of faith - the feeling of pushing the envelope into uncharted territory.The guy who is going to do this, Felix Baumgartner, must have that same feeling, at a level I will never reach. However, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially filled balloon that would take him to the upper end of our atmosphere. As soon as the 40-acre balloon, with skin no thicker than a dry cleaning bag, scraped the ground I knew it was over.How claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointment on the face of the current record holder and "capcom" (capsule communications), Col. Joe Kittinger. He hung his head low in mission control as he told Baumgartner the disappointing news: Mission aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The balloon will slowly drift to the edge of space at 120,000 feet (22.7 miles/36.53 kilometers). Here, "Fearless Felix" will unclip. He will roll back the door.Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of a swimming pool that he wants to land on, but not too hard. Still, he'll be traveling fast, so despite the distance, it will not be like diving into the deep end of a pool. It will be like he is diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 seconds. Like hitting the top of the water, he will begin to slow as he approaches the more dense air closer to Earth. But this will not be enough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute that can be deployed to slow him down. His team hopes it's not needed. Instead, he plans to deploy his 270-square-foot (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 meters).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a reserve parachute that will open automatically if he loses consciousness at mach speeds.Even if everything goes as planned, it won't. Baumgartner still will free fall at a speed that would cause you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It might not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way I'd miss this.

    注意事项

    本文(毕业论文(设计)基于GPRS 的滑坡地质灾害远程监测.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开