毕业论文(设计)基于GPRS 的风电并网稳定控制系统的研究.doc
基于GPRS的风电并网稳定控制系统的研究刘臣宾1,夏彦辉1,常东旭1,任祖怡1,李振宇2,陈刚2,杨福奎1,顾跃华1(1.南京南瑞继保电气有限公司,江苏省南京市 211102;2.阜新市供电公司电力调度所,辽宁省阜新市 123100)Research of Wide Area Protection and Control System to grid-connected wind farms Based on GPRSLIU Chenbin1,XIA Yanhui1,CHANG Dongxu1,REN Zuyi1,LI Zhenyu2,CHEN Gang2,YANG Fukui1,GU Yuehua1(1.NARI-Relays Electric Co Ltd,Nanjing 211102,China;2.Fuxin Electric Power Dispatching Department,Fuxin 123100,China)ABSTRACT: Grid-connected wind farm supplys clean energy for power systems, at the same time, it takes a challenge to the security and stability of power grid. Because of remote location, wind farms dont have cable communication. In this paper, power grid stability problem caused by wind farms is investigated. According to the specificity of communication channel in wind farms, wide area protection and control system to grid-connected wind farms is developed. Based on GPRS, the integrative control of power flow and voltage stability of grid-connected wind farms is assured. Finally, the application of wide area protection and control system to grid-connected wind farms in Fuxin power grid is introduced.KEY WORD:grid-connected wind farms, security and stability control, GPRS, integrated control of reactive power and voltage摘要:风电场并网运行,在为系统提供清洁能源的同时,也为电网的安全稳定运行带来了挑战。由于风电场地理位置偏远,不具备有线通信的条件。本文研究了风电场并网存在的稳定问题,针对风电场通信通道的特殊性,研制了风电场并网稳定控制系统,基于GPRS无线通信技术实现了风电并网的有功潮流和无功电压综合自动控制。最后,介绍了风电场并网稳定控制系统在阜新电网的应用。关键词:风电并网,安全稳定控制,GPRS,无功电压综合控制中图分类号:TM712;TM761;TM6140 引言在国家新能源战略的引导下,中国风力发电得到了突飞猛进的发展,连续四年实现新增装机容量翻番。截至2008年底,中国风电总装机容量达122亿瓦,成为亚洲第一、世界第四的风电大国。中国政府计划到2020年实现风力发电1000亿瓦。风电场往往远离负荷中心,且风电场难以单独为用户提供持续稳定的电力供应,因此需要将大型风电场接入电网运行。尽管风力发电是清洁能源,但风电又是一种波动性、间歇性电源,增加了潮流的不确定性,而电力系统是实时平衡的,风电的波动需要通过常规电源的调节和储能系统来平衡。风力发电机一般为异步发电机,在运行时需要从系统中吸收无功功率来建立磁场,风电场需安装无功补偿装置,从而使大型风电场并网运行后对局部电网的电压水平有明显的影响。当电网发生故障或扰动时造成风电场并网点的电压跌落时,风电机组的机端电压难以建立,若风电机组继续并网运行,将会影响到电网电压的恢复,因此需要采取切除风电机组的措施,如果此时风电机组出力较大,会造成系统潮流大范围转移,可能引起系统频率、电压崩溃。总之,风电并网给电网的安全稳定运行带来了一定的冲击。为了保证电网的安全,调度运行人员往往将风电场的出力限制在一个较小的范围。即使在系统缺电时,风电场的有功出力也不能得到充分利用,这无疑浪费了风电的装机容量。此外,风电场地理位置偏远,特别是海上风电场,且相对于火电厂、水电厂,单个风电场的装机容量不大,如果为每个风电场都建设专用光纤通道,将是一笔较大的支出。随着我国移动通信技术的快速发展和3G网络的正式商用,GPRS无线通信的优越性将越来越明显。如果充分研究当前风电并网存在的稳定问题,结合风电场通信通道的特殊性,研制出一套适用于风电场并网的稳定控制系统,实现风电并网的有功潮流和无功电压的综合自动控制,既保证了风能这一绿色能源得到有效开发、充分利用,又保证电网安全稳定运行,必将产生巨大的经济效益,并发挥显著的社会效益。1 风电并网存在的稳定问题2005年12月,中国国家标准化管理委员会发布了风电场接入电力系统技术规定1,从风电场的有功功率、无功功率、电压调节、运行频率、电能质量、通信与信号等多方面对接入电力系统的风电场提出了要求。国家电网公司发布了国家电网风电场接入电网技术规定2,指出了在风电场接入系统设计之前,要对本地区电网接纳风电能力进行研究。大规模风电并网运行存在着许多实际的技术问题待研究解决3:(1)风电并网地区一般处于供电网络末端,电压等级较低,电网较薄弱,需加强网架建设,提高风电送出能力;(2)风电功率的波动对系统电压有较大的影响,需建设完善的风电场无功电压综合控制系统,如在风电场装设投切电容器组或静止无功补偿器(SVC);(3)需深入研究风电功率预测技术,提高对风电功率的预测能力,以降低风电并网对电力系统调度运行的不利影响;(4)为了保证电网及风电的安全稳定运行,风电场需实现灵活的有功、无功功率控制,在紧急事故情况下,风电场可快速地与电网解列,事故处理完毕,立即恢复风电场的并网运行;(5)需实现满足并网要求的风电机组的国产化:具有无功电压控制、有功功率控制及低电压穿越能力;(6)需综合考虑同一地区水、火、风电的调节能力,尽量在本地区将风电带来的不利影响抵消掉。2 GPRS通信技术由于地理位置的影响和投资成本的限制,风电场可能不具备光纤通信的条件,需要为风电场并网稳定控制系统选择一种合适的通信通道。GPRS通用分组无线业务是一种基于GSM全球移动通讯系统的数据业务,它可以给移动用户和远程终端提供无线分组数据接入服务。GPRS具有资源利用率高、易扩展、传输速率高、接入时间短、支持IP协议、无线接入方便快捷、网络覆盖面广、收费合理按量计费、建设维护费用低等优点。GPRS网络理论传输最大速率为171.2kbps4,而目前实际应用带宽大约在40100kbps。当前,GPRS数据传输延时大约为13秒。GPRS组网方式分为通过公共接入点CMNET接入网络和从移动公司申请专用的接入点APN(Access Point Name)组建专用网5。GPRS在电力系统方面的应用已有不少成功案例,如电力抄表系统、变电房监控报警系统、路灯监控系统、电压质量监测系统等。但这些应用的共同点是:数据传输是间断性的、突发的、少量的。而电力系统稳定控制系统对数据传输的实时性要求比较高,如处理短路故障时要求数据传输在几个毫秒内完成。相对于短路故障,电网稳态事故(如变压器过载、母线低电压等)对数据传输的实时性要求低一些(几秒),当前GPRS的数据传输实时性可以满足要求。随着移动通讯技术的不断发展,GPRS网络数据传输的实时性会不断地提高。因此,研究GPRS在电力系统稳定控制系统中的应用具有重要的理论意义和现实意义。3 基于GPRS无线通信的风电并网稳定控制系统传统的稳定控制系统存在投资大、维护困难、不能针对风电的易变性和不确定性进行实时有效的控制等缺点。目前广泛应用的分布式稳定控制技术可实时监测主系统的有功潮流和电压水平,实施合理有效的控制,保证系统电网的安全稳定运行。大型风场一般位于供电网络的末端,距离主电网系统较远,分布式稳定控制系统所需要的光纤或载波通信网络难以实现。利用GPRS无线通信技术来实现稳定控制系统中各站之间的通信,可有效的满足系统通信可靠性和稳定性的要求。本文针对风电并网中存在的一系列问题,利用成熟的稳定控制装置,结合先进的GPRS无线通信技术,设计的风电并网分布式稳定控制系统,有效的实现了风电并网的有功潮流和无功电压综合自动控制,并具有成本低,维护方便,实现简单等优点。RCS-992分布式稳定控制装置是南京南瑞继保电气有限公司在总结继承国内外先进的稳定控制技术基础上,针对中国电网的特点和习惯,自主研发的区域电网及大区互联电网的安全稳定控制装置6。区域电网内的多个厂站的各套RCS-992型安全稳定控制装置,经通道配合构成一个电网安全稳定控制系统,系统可采用主从式单层或多层结构、复合式多主站结构,各个站点根据功能不同分为主站、子站和执行站。RCS-992系列稳定控制装置在国内电网得到了广泛应用7-12,为确保电网的安全稳定运行发挥了至关重要的作用。风电并网稳定控制系统各站间采用GPRS无线通道进行数据通信。稳定控制装置RCS-992通过异步串行接口RS232与无线传输终端模块通信,无线传输终端模块将信息以数据包的格式通过无线网络发送到对侧厂站无线通信模块。各站之间采用点对点(UDP)全双工通信模式,各站网络IP固定(通过移动公司为SIM卡分配固定的IP地址实现)。GPRS通道通信连接如示意图1。图1 GPRS通道通信连接示意图Fig.1 Graph of GPRS channel communication links与光纤通信不同,GPRS无线通信对数据的安全性要求更高。本系统通过两个手段解决了该问题:(1)采用安全性、可靠性更高的专用接入点组网方式,只有特定号码的SIM卡才能且只能通过该专用接入点访问GPRS网络;(2)更加严格的数据帧校验策略。本系统应用GPRS实现了如下通信功能:(1)数据缓冲功能:每包数据满512字节,或字节最大延时达20ms即触发数据打包发送;(2)具备心跳报文功能,保证通信双方连接正常;(3)自动重拨功能,连接中断后,自动寻找网络建立连接;(4)数据标识功能,数据包头尾自动添加标识字节,保证通信安全;(5)软硬件看门狗功能,当系统发生故障长时间无法收发数据时,自动断电重启。根据风电稳定控制的特点和要求,该系统的主要功能包括:(1)过载切机,监测风电场并网主通道上的主变或线路有功潮流,一旦发生过载,切除部分风电机组;(2)低压切机,监测风电场并网节点母线电压水平,一旦低于考核标准,参考风电机组吸收的无功,切除部分风电机组;与传统的低压减载不同,低压切机同时需考虑切除的风电机组的有功出力对系统稳定的影响;(3)高频切机,监测风电场并网节点母线频率,一旦高于考核标准,切除部分风电机组;(4)系统运行状态接近稳定极限时,若风机出力波动幅度持续较大,切除风电机组,防止风速的突然变化成为系统电压失稳的扰动;(5)根据系统关键断面潮流的情况实时调整风机出力的上限;(6)依据风电场并网节点母线电压水平,控制风电场无功补偿设备的投切。4 阜新风电并网稳定控制系统辽宁阜新地区具有丰富的风力资源,康平和彰武金山风力发电场一期工程共引进丹麦Vestas公司生产的24台V52-850kW型变桨、调频、调速低温型风力发电机组,二期工程共引进西班牙Gamesa公司生产的34台850kW变桨、调频、调速风电机组。两个风电场目前总装机容量为5万千瓦,成为辽宁省最大的风力发电场,并跻身全国大中型风力发电场行列。康平和彰武两个风场的10kV侧各有8回线路,每回10kV线路接34台风机,经过一台主变升压至66kV,康平风场经过10km的66kV输电线路接至彰武风场,彰武风场经过45km的66kV输电线路接至彰一变的中压侧,如图2所示。图2 康平风场、彰武风场接入电网示意图Fig.2 Graph of Kangping and Zhangwu wind farms connected to power grid如果风电场出力持续增长,吸收无功不断增大,会造成系统电压跌落,直至电压失稳;如果在电压跌落到一定程度时切除部分风电机组,系统电压能够恢复稳定。如图3所示。图3 切机与否,并网点电压变化曲线比较Fig.3 Comparison of Voltage curves whether with wind generator tripping为了实现风电并网的有功潮流和无功电压综合自动控制,更加深入地研究风电并网对电力系统的影响,开发了阜新风电并网稳定控制系统,该系统由阜新调度所、彰武一次变、康平风电场和彰武风电场的4套RCS-992系列分布式稳定控制装置及辅助通信设备组成。该系统按照功能可将各站分别定义为阜新调度稳控主站、彰武一次变信息子站和康平、彰武风场执行站。阜新调度主站安全稳定控制装置的功能是接收彰武一次变稳定控制装置发送来的两台主变的有功功率和66kV母线电压,进行主变过载和66kV母线低电压判断。如果发生主变过载,则参照康平风场和彰武风场发送来的16回10kV进线的有功功率,切除相应线路,并发送至对应风场稳定控制装置进行出口跳闸。如果发生66kV母线低电压,则依据风场从系统中吸收的无功数值是否达到了其定值判断低电压是否是由风场引起的,如果是由风场吸收无功引起的低电压,则参照康平风场和彰武风场发送来的16回10kV进线吸收的无功功率,切除相应线路,并发送至对应风场稳定控制装置进行出口跳闸。为方便维护,阜新调度主站安全稳定控制装置将彰武一次变#1主变变中过载起动定值、#2主变变中过载起动定值和66kV母线低电压起动定值发送至彰武一次变,用于起动故障录波器。这样,所有的策略均在阜新调度主站实现,为运行维护提供了极大方便。彰武一次变作为信息子站,监测系统的有功潮流和母线电压水平,并将数据上送至阜新调度稳控主站。康平和彰武风电场监测风机出力和吸收无功情况,上送阜新调度主站,并接收主站命令,切除相应10kV进线,保证系统的安全稳定运行。系统配置和通信信息如图4所示。图4系统配置和通道信息简图Fig.4 System configuration and communication signal各站的稳定控制装置还具备录波节点输出,用于起动故障录波器,可详细记录故障前后系统运行情况,便于故障分析,为研究风电并网对电力系统的影响和电网的运行状态对风力发电机组的影响提高宝贵的现场运行资料。阜新风电并网稳控系统各站通道联系见图5。GPRS通信通道经现场测试和验证,满足稳定系统通信稳定性和可靠性的要求。图5 阜新风电并网稳定控制系统通道联系示意图Fig.5 Channel link graph of wide area protection and control system to grid-connected wind farms in Fuxin目前,该系统已正式投入运行,为保障阜新地区风电系统的安全稳定运行和提高风电运行的经济效益作出了贡献。5 结语风电并网稳定控制系统的投运,对于充分利用风电能源,保证电网安全稳定运行具有重要的现实意义,对于深入研究风电特性,积累在风电功率预测、负荷跟踪、风电并网的无功调节、调度方式管理等方面的经验,探索GPRS无线通信方式在稳控系统中的应用都具有积极的意义,对分布式发电系统的并网稳定控制具有借鉴意义和推广价值。参 考 文 献1 中国国家标准化管理委员会. 风电场接入电力系统技术规定. 2005年12月12日.Standardization Administration of the People's Republic of China. Technical rule for connecting wind farm to power nerwork. 2005.2 国家电网公司. 国家电网风电场接入电网技术规定(试行).2005年.State Grid Corporation of China. Technical rule for connecting wind farm to power nerwork in SGCC(trial). 2005.3 项真,江文,解大,等. 风电并网系统稳态运行的研究. 华东电力, 2007,35(3):35-40.XIANG Zhen, JIANG Wen, XIE Da, et al. Research on stable operation of grid-connected wind farms. East China Electric Power, 2007,35(3):35-40.4 崔秀玉,王志勇,王成祥. GPRS技术在电力系统通信中的应用. 电力系统通信, 2004, 8:3-7.CUI Xiuyu, WANG Zhiyong, WANG Chengxiang. The application of GPRS technique in power system communication. Power Systems Communication, 2004, 8:3-7.5 周林,孟婧,徐会亮,等. GPRS在电力系统中的应用现状与展望. 电力建设,2008,29(3):8-13.ZHOU Lin, MENG Jing, XU Huiliang, et al. Current Status of GPRS Application in Electric Power System and Its Prospects. Electric Power Construction, 2008,29(3):8-13.6 孙光辉. 区域稳定控制中若干技术问题. 电力系统自动化,1999,23(3):4-7.SUN Guanghui. Techniques in Regional Stability Control. Automation of Electric Power Systems,1999,23(3): 4-7.7 任祖怡,赵明君,夏尚学,等.安全稳定控制系统在新疆南部电网的应用. 电力系统自动化,2008,32(12): 104-107.REN Zuyi, ZHAO Mingjun, XIA Shangxue, et al. Application of Wide Area Protection and Control System to Southern Xinjiang Power Grid. Automation of Electric Power Systems,2008,32(12): 104-107.8 刘志,雷为民,任祖怡,等. 京津南部电网区域稳定控制系统的研究和实施. 中国电机工程学报,2007,27(22):51-56.LIU Zhi, LEI Weimin, REN Zuyi, et al. Research and application of regional stability control system for southern Beijing-Tianjin power grid. Proceedings of the CSEE, 2007,27(22):51-56.9 樊阳文,刘志,白杨,等. RCS-992稳控装置在福建在线电压稳定控制系统中的应用. 电力系统自动化, 2005, 29(20):85-88.FAN Yangwen, LIU Zhi, Bai Yang, et al. Application of RCS-992 Stability Control Device in Fujian On-line Voltage Stability Control System. Automation of Electric Power Systems, 2005, 29(20):85-88.10 任祖怡,吴小辰,黄河,等. 用于安全稳定控制的高压直流极闭锁判据. 电力系统自动化, 2007,31(10):41-44.REN Zuyi, WU Xiaochen, HUANG He, et al. HVDC Pole Blocking Detection for Security and Stability Control. Automation of Electric Power Systems, 2007,31(10):41-44.11 何强,王琦,刘金生,等. 藏中电网安全稳定控制系统的研究. 2008中国电机工程学会年会.HE Qiang, WANG Qi, LIU Jinsheng, et al. Research of Wide Area Protection and Control System for Central Xizang Power Grid. Annual meeting of CSEE,2008.12 樊阳文,周剑,刘志,等. 2005年南方电网安全稳定控制系统实施方案/第十届全国保护和控制学术研讨会论文集, 2005年10月15-19日, 珠海. 南京南瑞继保电气有限公司, 2005:379-383.FAN Yangwen, ZHOU Jian, LIU Zhi, et al. The project of security and stability control system for China Southern Power Grid in 2005 /Proceedings of the 10th Chinese Conference on Power System Protection and Control, Oct 15-19,2005, Zhuhai. Nanjing NARI-RELAYS Electric Power Co., Ltd.,2005:379-383.刘臣宾(1965),男,高级工程师,主要研究方向:电力系统及其自动化。夏彦辉(1982),男,通信作者,工程师,主要研究方向:电力系统稳定分析与控制。E-mail:xyhxyh。常东旭(1982),男,工程师,主要研究方向:电力系统安全稳定控制。Editor's note: Judson Jones is a meteorologist, journalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoes to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will always wonder what it was like to huddle around a shortwave radio and through the crackling static from space hear the faint beeps of the world's first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and the first space shuttle take off for the stars. Those events were way before my time.As a kid, I was fascinated with what goes on in the sky, and when NASA pulled the plug on the shuttle program I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As a meteorologist, I've still seen many important weather and space events, but right now, if you were sitting next to me, you'd hear my foot tapping rapidly under my desk. I'm anxious for the next one: a space capsule hanging from a crane in the New Mexico desert.It's like the set for a George Lucas movie floating to the edge of space.You and I will have the chance to watch a man take a leap into an unimaginable free fall from the edge of space - live.The (lack of) air up there Watch man jump from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watched the balloons positioned at different altitudes in the sky to test the winds, knowing that if they would just line up in a vertical straight line "we" would be go for launch.I feel this mission was created for me because I am also a journalist and a photographer, but above all I live for taking a leap of faith - the feeling of pushing the envelope into uncharted territory.The guy who is going to do this, Felix Baumgartner, must have that same feeling, at a level I will never reach. However, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially filled balloon that would take him to the upper end of our atmosphere. As soon as the 40-acre balloon, with skin no thicker than a dry cleaning bag, scraped the ground I knew it was over.How claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointment on the face of the current record holder and "capcom" (capsule communications), Col. Joe Kittinger. He hung his head low in mission control as he told Baumgartner the disappointing news: Mission aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The balloon will slowly drift to the edge of space at 120,000 feet (22.7 miles/36.53 kilometers). Here, "Fearless Felix" will unclip. He will roll back the door.Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of a swimming pool that he wants to land on, but not too hard. Still, he'll be traveling fast, so despite the distance, it will not be like diving into the deep end of a pool. It will be like he is diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 seconds. Like hitting the top of the water, he will begin to slow as he approaches the more dense air closer to Earth. But this will not be enough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute that can be deployed to slow him down. His team hopes it's not needed. Instead, he plans to deploy his 270-square-foot (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 meters).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a reserve parachute that will open automatically if he loses consciousness at mach speeds.Even if everything goes as planned, it won't. Baumgartner still will free fall at a speed that would cause you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It might not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way I'd miss this.