机电一体化毕业设计(论文)基于PLC控制的变频调速恒压供水系统设计.doc
-
资源ID:3945844
资源大小:976KB
全文页数:21页
- 资源格式: DOC
下载积分:8金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
机电一体化毕业设计(论文)基于PLC控制的变频调速恒压供水系统设计.doc
湖南生物机电职业技术学院毕业设计(论文)题 目: PLC恒压供水系统专 业 机电一体化技术 班 级 姓 名 指导教师 2011 年 05月14日 摘 要 随着人们对生活水平要求的不断提高和经济社会发展的需求;再加上目前能源紧缺,严重制约着经济社会的发展。利用现有的成熟技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。本文介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。在经过PID运算,通过PLC控制变频与工频切换,实现闭环自动调节恒压变量供水。运行结果表明,该系统具有压力稳定,结构简单,工作可靠等特点。而本设计是针对居民生活用水而设计的。电动机泵组成由三台水泵组成,由变频器或工频电网供电,根据供水系统出水口的压力和流量来控制变频器电动机泵的速度和切换,使系统运行在最合理状态,保证按需供水。关键词: 变频器; 恒压供水;PLC目 录摘 要2第一章 绪论41.1变频恒压供水系统的国内研究现状41.2课题来源及本文的主要研究内容51.3本论文中所做的工作51.4恒压供水系统的基本构成5第二章 PLC功能选择及应用72.1 PLC模拟量扩展单元的配置及应用72.1.1 模拟量输入模块的功能及与PLC系统的连接72.1.2 模拟量输入模块缓冲存储器(BFM)的分配82.1.3 模拟量输出模块的功能及PLC系统连接8第三章 变频器和压力传感器93.1变频器的分类及工作原理93.2 变频器硬件选择103.3 压力传感器11第四章 系统的设计124.1 系统要求124.2控制系统的I/O及地址分配124.3 PLC系统选型134.4 电气控制系统原理图134.4.1主电路图134.4.2 控制电路图144.5.系统的运行分析154.6 系统程序设计164.6.1由“恒压”要求出发的工作泵组数量管理174.6.2 多泵组泵站泵组管理规范174.6.4程序的结构及程序功能的实现174.6.5系统的运行分析19致 谢21参 考 文 献22第一章 绪 论随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和供水系统可靠性的要求不断提高。把先进的自动化技术、控制技术、通讯及网络技术等应用到供水领域,成为对供水系统的新要求。变频恒压供水系统集变频技术、电气技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时系统具有良好的节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。1.1变频恒压供水系统的国内研究现状变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、压频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本三菱公司,就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循环方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。艾默生电气公司和成都希望集团(森兰变频器)也推出恒压供水专用变频器(5。5kW-22kW),无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。 可以看出 ,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC)的变频恒压供水系统的水压闭环控制研究得不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。1.2课题来源及本文的主要研究内容1、课题来源本课题来源于生产、生活供水的实际应用。2、研究的主要内容本系统是三泵生活/消防双恒压供水系统,变频恒压供水系统主要由变频器、可编程控制器、压力传感器组成。本文研究的目标是对恒压控制技术给予提升,使系统的稳定性和节能效果进一步提高,操作更加简捷,故障报警及时迅速,同时具有开放的数据传输。该系统可以生活供水和消防供水的双用供水系统。1.3本论文中所做的工作根据系统要求,设计出满足要求的恒压供水系统,对PLC、变频器、压力传感器进行选型,根据系统要求设计出能满足控制要求的控制电路和控制程序。1.4恒压供水系统的基本构成 恒压供水泵站一般需没多台水泵及电机,这比设单台水泵及电机节能而可靠。配单台电机及水泵时,它们的功率必须足够的大,在用水量少时开一台大电机肯定是浪费的电机选小了用水量大时供水会不足。而且水泵与电机都有维修的时候,备用是必要的。恒压供水的主要目标是保持管网水压的恒定,水泵电机的转速要跟随用水量的变化而变化,这就要用变频器为水泵电机供电。这也有两种配置方案,一是为每台水泵电机配一台变频器,这当然方便,电机与变频器间不须切换,但购变频器的费用较高。另一种方案是数台电机配一台变频器,变频器与电机间可以切换,供水运行时,一台水泵变频运行。其余水泵工频运行,以满足不同用水量的需求。调节器是一种电子装置,在系统中完成以下几种功能:(1) 设定水管压力的给定值。恒压供水水压的高低依需要设定。 供水距离越远,用水地点越高,系统所需供水压力越大。给定值即是系统正常工作时的恒压值。另外有些供水系统可能有多种用水目的,如将生活用水与消防用水共用一个泵站,水压的设定值可能不止一个,一般消防用水的水压要高一些。也有的调节器以模拟量方式设定。 (2)接收传感器送来的管网水压的实测值。管网实测水压回送到泵站控制装置成为反馈,调节器是反馈的接收点。 (3)根据结定值与实测值的综合,依一定的调节规律发出系统调节信号。调节器接收了水压的实测反馈信号后,将它与结定值比较,得到给定值与实测值之差。如给定位大于实际值,说明系统水压低于理想水压,要加大水泵电机的转速如水压高于理想水压,要降低水泵电机的转速。这些都由调节器的输出信号控制。为了实现调节的快速性与系统的稳定性,调节器工作中还有个调节规律问题,传统调节器的调节规律多是比例-积分-微分调节,俗称PID调节器。调节器的调节参数,如P、I、D参数均是可以由使用者设定的。PID调节过程视调节器的内部构成有数字式调节及模拟量调节两类,以微计算机为核心的调节器多为数字式调节。 调节器的输出信号一般是模拟信号,420mA变化的电流信号或010V间变化的电压信号。信号的量值与前边提到的差值成比例,用于驱动执行设备工作。在变频恒压供水系统中,执行设备就是变频器。第二章 PLC功能选择及应用2.1 PLC模拟量扩展单元的配置及应用 PLC的普通输入输出端口均为开关量处理端口,为了使PLC能完成模拟量的处理,常见的方法是为整体式PLC加配模拟量扩展单元。模拟量扩展单元可将外部模拟量转换为PLC可处理的数字量及将PLC内部运算结果转换为机外所需的模拟量。模拟量扩展单元有单独用于模/数转换的,单独用于数/模转换的,也有兼具模/数及数/模两种功能的。以下介绍三菱FX系列PLC的模拟量模块以及,它们分别具有FX-4AD及FX-2DA,它们分别具有4路模拟量输入及2路模拟量输出,可以用于恒压供水控制中。 2.1.1 模拟量输入模块的功能及与PLC系统的连接 FX-4AD 4模拟量输入模块具有4个通道,可同时接受并处理4路模拟量输入信号, 最大分辨率为12位。输入信号可以是-10+10V的电压信号(分辨率为5Mv),也可以420mV(分辨率为16A)或-20+20mA(分辨20A)的电流信号。模拟量信号可通过双绞屏蔽电缆接入,连接及方法如图2-1所示,当使用电流输入时,需将V+及I+端短接。 图2-1 FX-4AD模块的连接图FX-4AD的宽及高与FX相同,在安装时装在FX基本单元的右边,将总线连接器接入左侧单元的总线插孔中。FX系列可编程控制器中,与PLC连接的特殊功能扩展模块位置从左至右依次编号(扩展单元不所示。占编号),如图4-所示FX-4AD将消耗基本单元或电源扩展单元的+5VDC电源(内部电源)30mA电流,+24VDC电源(外部电源)55mA电流。其通常转换速度为15ms/ 道,高速转换速度为6/ms道。2.1.2 模拟量输入模块缓冲存储器(BFM)的分配为了能适用于多种规格的输入、输出量,模拟量处理模块都设成可编程的。FX-4AD模块利用缓冲存储器(简称模BFM)的设置完成编辑工作。FX-4AD拟量量输入模块共有32个缓冲存储器,但目前只使用了以下21个BFM:L1FX-32MR A/D FX-8EX A/D D/A FX基本单元 #0 #1 #22-1特殊功能模块2.1.3 模拟量输出模块的功能及PLC系统连接FX-2DA模块用来将12位数字信号转换成模拟电压或电流输出。它具有2个模拟量输出通道。这两个通道都可以输出010VVDC(分辨率2。5mV)、05DVC(分辨率1。25mV)的电压信号,或420Ma(分辨率为4A)的电流信号。模拟量输出可通过双绞屏蔽电缆与驱动负载相连,当使用电压输出时,需要IOUT和COM端短接。COM IOUT VOUTCOM IOUT VOUT基本单元FX-2DA记录仪器电流输出变频器等电压输出图2-2 FX-2DA模块的连接图FX-2DA安装时装在FX基本单元的右边。FX-2DA将消耗基本单元或电源扩展单元的+5VDC电源单元的(内部电源)20mA电流,+24VDC电源5mA电流。转换时间为4ms/通道。第三章 变频器和压力传感器交流变频器是微计算机及现代电力电子技术高度发展的结果。微计算机是变频器的核心,电力电子器件构成了变频器的主电路。大家都知道,从发电厂送出的交流电的频率是恒定不变的,在我国是每秒50Hz。而交流电动机的同步转速。 (3-1)式中-同步转速,r/min; -定子频率,Hz; -电机的磁极对数。而异步电动机转速 (3-2)式中-异步电机转差率,一般小于3%。均与送入电机的电流频率/成正比例或接近于正比例。因而,改变频率可以方便地改变电机的运行速度,也就是说变频对于交流电机的调运来说是十分合适的。3.1变频器的分类及工作原理变频器的较详细的工作原理还与变频器的工作方式有关,通用变频器按工作方式分类如下: (1)控制。控制即电压与频率成比例变化控制。 由于通用变频器的负载主要是电动机,出于电动机磁场恒定的考虑,在变频的同时都要伴随着电压的调节。控制由于忽略了电动机漏阻抗的作用,在低频段工作特性不理想。因而实际变频器中采用控制。采用控制方式的变频器通常被称为普通功能变频器。(2)转差频率控制。转差频率控制是在控制基础上增加转差控制的一种控制方式。从电动机的转速角度看,这是一种以电动机的实际运行速度加上该速度下电动机的转差频率确定变频器的输出频率的控制方式。更重要的是,在=常数的条件下,通过对转差率的控制,可以实现对电机转矩的控制。采用转差频率控制的变频器通常属于多功能型变频器。(3)矢量控制。矢量控制是受调速性能优良的直流电动机磁场电流及转矩电流可分别控制启发而设计的一种控制方式。矢量控制将交流电动机的定子电流采用矢量分解的方法,计算出定子电流的磁场分量及转矩分量,并分别控制,从而大大提高了变频器对电动机转速及力矩控制的精度及性能。采用矢量控制的变频器通常称为高功能变频器。通用变频器按工作方式分类的主要工程意义在于各类变频器对负载的适应性。普通功能型变频器适用于泵类负载及要求不高的反抗性负载,而高功能变频器可适用于位能性负载。3.2 变频器硬件选择 根据设计要求,变频器选用日本三菱变频器FR-A500产品。该产品可以和三菱PLC工作协调。变频器选用日本三菱变频器FR-A500产品,适配电机15 kW,该变频器基本配置中带有PID功能。通过变频器面板设定一个给定频率作为压力给定值,压力传感器反馈来的压力信号(010 V)接至变频器的辅助输入端FI、FC,作为压力反馈,变频器根据压力给定和实测压力,调节输出频率,改变水泵转速,控制管网压力保持在给定压力值上。M1、M2为变频器的极限输出频率的检测输出信号端,该信号进PLC,作为泵变频与工频切换的控制信息之一,变频器的极限输出频率通过面板可以设定。MA、MC为变频器发生故障的输出信号,该两端连接信号灯,以显示变频器故障,变频器面板上有故障复位按键,轻故障用复位按键复位,可重新启动变频器。S1和S2短接,并与S3连接到PLC的输出点上,由PLC控制变频器的运行与关断;U、V、W输出端并联三个接触器分别接M1、M2、M3泵电机,变频器可分别驱动三台泵,另外这三台泵电机还通过另外三个接触器并联到工频电源上,这6个接触器线包连接到PLC的四个输出点上,由PLC控制其工频、变频切换工作。通过变频器面板设定一个给定频率作为压力给定值(14端),压力传感器反馈来的压力信号(010V)接至变频器端子的7端、8端,作为压力反馈,变频器根据压力给定和实测压力,调节输出频率,改变水泵转速。变频器端子的19端和20端是传感器压力设定的上、下限值,该信号进PLC,作为工频切换的控制信息,由PLC控制水泵的工频或变频运行。变频器有2个作用,一是作为电机的软起动装置,限制电动机的启动电流;二是改变异步电动机的转速,实现恒压供水。下图3-1为日本三菱变频器FR-A500在电路中的接线图。R S TS1 US2 VS3 W FR-A500FIFCM1 接PLC接PLC 接指示灯接电机380V78图3-1 日本三菱变频器FR-A500在电路中的接线图3.3 压力传感器在智能系统中检测是非常重要的一部分,它将检测到控制量反馈给系统,才能实现自动控制,给系统所用的检测的是水压,这个系统中选用压力传感器,它的作用是通过安装在出水管网上的压力传感器,把出口压力信号变成420mA变化的电流信号或010V间变化的电压信号的标准信号送入PLC的端口进行PID调节,经运算与给定压力参数进行比较,得出一个调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制切换器进行加减泵。根据用水量的大小由PLC控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。此外,系统还设有多种保护功能,尤其是硬件/软件备用水泵功能,充分保证了水泵的及时维修和系统的正常供水。供水系统的压强是,下面单位都是估计标准单位,g=9.8,一般情况下,h<60米,所以本系统供水系统输出压力一般小于或等于0.6Mpa,系统选用YTZ-150型带电接点式的压力传感器,其水压检测范围为01MPa,检测精度为土0.01MPa,该传感器将01MPa范围的压力对应转换成010V的电信号。该传感器还具有体积小,重量轻、结构简单、工作可靠的特点。第四章 系统设计4.1 系统要求对三泵生活/消防双恒压供水系统的基本要求是: (1)生活供水时,系统低恒压值远行,消防供水时高桓压值远行。 (2)三台泵根据恒压的需要采取“先开先停”的原则接人和退出。 (3)在用水量小的情况下,如果一台泵连续运行时间超过3h,则要切换下即系统具有“倒泵功能”,避免某一台泵工作时间过长。 (4)三台泵在启动时都要有软启动功能。(5)要有完善的报警功。(6)对泵的操作要有手动控制功能,手动只在应急或检修时临时使用。 4.2控制系统的I/O及地址分配 将系统所有的输入信号和输出信号统一进行编址,该系统有7个输入信号和13个输出信号,表4-1是将控制系统的输入输出信号的名称、代码及地址编号。水位上下限信号分别为X1、X2它们在水淹没时为0,时为1。 名 称代码地址编号输入信号手动和自动消防信号SA1X0水池水位下限信号SLLX1水池水位上限信号SLHX2变频器报警信号SUX3消铃按钮SB9X4试灯按钮SB10X5远程压力表模拟量电压值Up模拟量输入模块电流通道输出信号1#泵工频运行接触器及指示灯KM1,HL1Y01#泵变频运行接触器及指示灯KM2,HL2Y12#泵工频运行接触器及指示灯KM3,HL3Y22#泵变频运行接触器及指示灯KM4,HL4Y33#泵工频运行接触器及指示灯KM5,HL5Y43#泵变频运行接触器及指示灯KM6,HL6Y5生活消防供水转换电磁阀YV2Y10水池水位下限报警指示灯HL7Y11变频器故障报警指示灯HL8Y12火警报警指示灯HL9Y13报警电铃HAY14变频器频率复位控制KAY15控制变频器频率用电压信号Uf模拟量输入模块电流通道表4-1 输入输出点代码及地址编号4.3 PLC系统选型 从上面分析可以知道,系统共有开关量输入点6个、开关量输出点12个;模拟量输入点1个、模拟量输出点1个。选用FX-32MR主机一台,加上一个模拟量输入扩展模块FX-4N,再扩展一个模拟量输出扩展模块FX-2N。这样的配置是最经济的。整个PLC系统的配置如图4-2所示。主机单元FX-32MR模拟量输入模块FX-4N模拟量输入FX-2N图4-2 PLC系统的组成4.4 电气控制系统原理图电气控制原理图包括主电路图、控制电路图。4.4.1主电路图如图4-2所示为电控系统的主电路图。三台电机分别为M1、M2、M3。接触器KM1、KM3、KM5分别控制M1、M2、M3的工频运行;电机分别为M1、M2、M3。接触器KM2、KM4、KM6分别控制M1、M2、M3的变频运行;FRl、FR2、FR3分别为三台水泵电机过载保护用的热继电器:QS1、QS2、QS3、QS4别为变频器和三合泵电机主电路的隔离开关;FU1为主电路的熔断器;FR-A500是日本三菱变频器。R S TU V W M M MNL1L2L3KM1 KM3 KM5KM2 KM4 KM6FR1FR2FR3 QS1 QS2 QS3 QS4FR-A500KM1KM3KM6KM5CIMR-P5A45P5 QS1 QS2 QS3 QS4FR3FR2FR1KM2 KM4 KM6KM1 KM3 KM5NL1L2L3图4-3 电控系统主电路4.4.2 控制电路图如图4-3为电控系统控制电路图。图中SA为手动/转换开关,SA打在1的位置为手动控制状态;打在2的状态为自动控制状态。手动运行时,可用按钮SBlSB8控制三台泵的启/停和电磁阀YV2的通断;自动运行时,系统在PLC程序控制下运行。图中的HL10为自动运行状态电源指示灯。对变频器R进行复位时只提供一个干触点信号,由于PM为4个输出点为一组共用一个COM端,而本系统又没有剩下单独的COM端输出组,所以通过一个中间继电器KA的触点对变频器实行复频控制。2.1 手动运行按下按钮启动或停止水泵,可根据需要分别控制1#3#泵的启停。该方式主要供检修及变频器故障时用。2.2 自动运行合上自动开关后,1#泵电机通电,变频器输出频率从0 Hz上升,同时PID调节程序将接收到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给变频器,如压力不够,则频率上升到50 Hz,1#泵由变频切换为工频,对2#泵进行变频,变频器逐渐上升频率至给定值,加泵依次类推;如用水量减小,从先启的泵开始减,同时根据PID调节器给的调节参数使系统平稳运行。若有电源瞬时停电的情况,则系统停机;待电源恢复正常后,系统自动恢复运行,然后按自动运行方式启动1#泵变频,直至在给定水压值上稳定运行。变频自动功能是该系统最基本的功能,系统自动完成对多台泵软起动、停止、循环变频的全部操作过程。4.5.系统的运行分析(1)设备控制3台水泵电机低峰供水时,工作一台水泵电机变频调速,用水量加大时,首台工作水泵由低速向高速调频,当工作频率达到50 Hz即水泵满负荷工作时仍不能满足用水要求时,将首台工作水泵切换至工频运转,变频调速器控制第二台水泵调频运转,同时工作2台水泵。如用水量进一步增加,第二台水泵切换至工频运转,变频调速器控制第三台水泵调频运转,同时工作3台水泵。供水量减少时,调速工作水泵首先由高频段向低频段调速运转,水泵工作频率达到柜内微机控制器预先设定的下限工作频率而实测水压仍高于水压设定值时,直接停止首台工作水泵,第二台泵工频运转,第三台泵调频运转保持系统水压恒定,如2台水泵同时工作实际水压仍高于设定值,直接停止工频运转水泵,第三台调频运转保持系统水压恒定。(2)安全问题在软件方面设置多个保护环节,时时检测系统状态,安全报警等。硬件方面设置安全链机械保护,经多个闭合触点组成,包括紧急停车,压力超上下限开关,水位超上下限开关,电机过热保护继电器,空载保护等。安全链多个触点均为常闭触点,其中任一触点断开,安全链即失效,系统处于停机状态。须排除故障,系统才能进行正常工作。图4-4电控系统控制电路图4.6 系统程序设计 硬件连接确定之后,系统的控制功能主要通过软件实现结合前述泵站的控制要求,对泵站软件设计分折如下:4.6.1由“恒压”要求出发的工作泵组数量管理 前边已经说过,为了恒定水压,在水压降落时要升高变频器的输出频率,且在一台泵工作不能满足恒压要求时,需启动第二台泵或第三台泵。判断需启动新泵的标准是变频器的输出频率达到设定的上限值。这一功能可通过比较指令实现。为了判断变频器工作频率达上限值的确实性,应滤去偶然的频率波动引起的频率达到上限情况,在程序中考虑采取时间滤波。4.6.2 多泵组泵站泵组管理规范由于变频器泵站希望每一次启动电动机均为软启动,又规定各台水泵必须交替使用,多泵组泵站泵组的投运要有个管理规范。在该系统中,控制要求中规定任一台泵连续变频运行不得超过3h,因此每次需启动新泵或切换变额泵时,以新运行泵为变频泵是合理的。具体的操作时,将现行运行的变频泵从变频器上切除,并接上工频电源运行,将变频器复位并用于新运行泵的启动。除此之外,泵组管理还有一个问题就是泵的工作循环控制,本例中使用泵号加1的方法实现变频泵的循环控制(3再加1等于0),用工频泵的总数结合泵号实现工频泵的轮换工作。4.6.4程序的结构及程序功能的实现 根据可知,PLC上在恒压供水系统中的功能较多,由于模拟量单元及PID调节都需要编制初始化及中断程序,本程序分可为三部分:主程序、子程序和中断程序。系统初始化的一些工作放在初始化子程序中完成。这样可节省扫描时间。利用定时器中断功能实现PID控制的定时采样及输出控制。主程序的功能最多,如泵切换信号的生成、泵组接触器逻辑控制信号的综合及报警处理等都在主程序。生活及消防双恒压的两个恒压值是采用数字方式直接在程序中设定的。生活供水时系统设定值为满量程的70,消防供水时系统设定值为满量程的90。在本系统PID中,只是用了比例和积分控制,其回路增益和时间常数可通过工程计算初步确定,但还需要进一步调整以达到最优控制效果。初步确定的增益和时间常数) 积分时间程序中使用的PLC元件及其功能如表4-2所示;器件地址功能器件地址功能D100过程变量标准值T38工频泵减泵滤波时间控制D102压力给定值T39工频/变频转换逻辑控制D104PI计算值M10故障结束脉冲信号D11比例系数M11泵变频启动脉冲D111采样时间M12减泵中间继电器D112积分时间M13倒泵变频启动脉冲D113微分时间M14复位当前变频泵运行脉冲D114变频运行频率下限值M15当前泵运行启动脉冲D115生活供水变频运行上限值M16新泵变频启动脉冲D116消防供水变频运行上限值M20泵工频/变频转换逻辑控制D150PI调节结果存储单元M21泵工频/变频转换逻辑控制D180变频工作泵泵号M22泵工频/变频转换逻辑控制D182变频工作泵的总台数M30故障信号汇总D184倒泵时间存储器M31水池水位下限故障逻辑D190工频/变频转换逻辑控制M32水池水位下限故障消铃逻辑T33工频/变频转换逻辑控制M33变频器故障消铃逻辑T34工频泵增泵滤波时间控制M34火灾消铃逻辑表4-2 程序中使用PLC机内器件及功能4.6.5系统的运行分析(1)设备控制3台水泵电机低峰供水时,工作一台水泵电机变频调速,用水量加大时,首台工作水泵由低速向高速调频,当工作频率达到50 Hz即水泵满负荷工作时仍不能满足用水要求时,将首台工作水泵切换至工频运转,变频调速器控制第二台水泵调频运转,同时工作2台水泵。如用水量进一步增加,第二台水泵切换至工频运转,变频调速器控制第三台水泵调频运转,同时工作3台水泵。供水量减少时,调速工作水泵首先由高频段向低频段调速运转,水泵工作频率达到柜内微机控制器预先设定的下限工作频率而实测水压仍高于水压设定值时,直接停止首台工作水泵,第二台泵工频运转,第三台泵调频运转保持系统水压恒定,如2台水泵同时工作实际水压仍高于设定值,直接停止工频运转水泵,第三台调频运转保持系统水压恒定。(2)安全问题在软件方面设置多个保护环节,时时检测系统状态,安全报警等。硬件方面设置安全链机械保护,经多个闭合触点组成,包括紧急停车,压力超上下限开关,水位超上下限开关,电机过热保护继电器,空载保护等。安全链多个触点均为常闭触点,其中任一触点断开,安全链即失效,系统处于停机状态。须排除故障,系统才能进行正常工作。致 谢在即将毕业之际,毕业设计已接近尾声,我想借此机会对关心和支持我的所有人表示感谢!三年来,我认真地学习了专业课程基础知识,具有一定的设计理论基础和独立设计能力,由于毕业设计的课题是一种整体性的,系统性的设计,我真的是很努力地在做,但还是感到力不从心,因而这次设计在深度和广度上都有一定的局限性,不过,我认为还是提高了认识,学到了东西。所以我要感谢所有的任课老师,是您们的教育和培养,才使我学有所获。大学生活即将结束,我感到自己树立了正确的世界观、人生观、价值观。在此,我要感谢学院领导和班主任李老师,是他们教会我做人的道理。还有我要向在我论文倾注了大量心血和提供了许多帮助的各位老师、同学表示深深的敬意和谢意。特别设计龙慧老师在我完成论文的过程中倾注了悉心的指导和大力支持,在此表示深深地感谢。 参 考 文 献1 厉无咎、顾明时,应用变频调速恒压变流量供水系统 中国第四届交流电机调速传动学术会议19952 孙增析、张再兴等智能控制理论与技术。清华大学出版社 19973 张扣宝 基于PLC 和变频器控制的恒压供水系统设计2007年第11 期电气技术 20074 滕俊沛 基于PLC 变频调速恒压供水系统的设计 2007。35 王树主。变频调速系统设计与应用M 机械工业出版社 2006。6 吴忠智、吴加林, 变频器应用手册 机械工业出版社 2000