欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    指纹识别系统论文.doc

    • 资源ID:3943853       资源大小:684.50KB        全文页数:41页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    指纹识别系统论文.doc

    指纹识别系统论文指纹识别算法研究摘要随着计算机和网络的迅速发展,人们对身份认证的准确性、安全性与实用性提出了更高的要求。基于生物特征识别的智能身份认证技术也逐渐受到广泛的关注。在众多的生物识别技术中,指纹识别技术是发展最早、应用最广泛的一种。指纹识别技术充分利用了指纹的普遍性、唯一性和永久性的生物特征,已逐步取代了传统的基于标志和数字的识别方式,目前在网络、银行、金融、医疗和安检等行业均得到了广泛应用。本文对指纹识别系统的原理和基本过程进行了分析研究,重点研究了指纹图像预处理算法,并且进行了验证。在指纹图像预处理部分,论文对预处理的各个步骤包括规格化、图像分割、中值滤波、二值化、细化等以及各个步骤的方法进行了深入的分析和研究,选择了一种图像预处理方案。在指纹特征提取部分,采用基于Matlab实现的指纹细节特征提取方法,并给出了去伪算法。指纹特征提取是从细化后的指纹图中得到细节特征点(即端点和分叉点),此特征点含有大量的伪特征,既耗时又影响匹配精度。采用了边缘去伪和距离去伪,使得特征点去伪前后减小了近1/3,然后提取可靠特征点信息,以便实现指纹匹配。 在指纹匹配部分,本文采用基于细节点的指纹匹配算法,并进行研究。关键词指纹识别;预处理;特征提取;匹配Fingerprint Recognition AlgorithmAbstractWith the rapid Progress of computer science and network technique,An accurate,secure and practical techno1ogy of Personal identification becomes more and more important. Technology of Personal identification based on Biometrics has received extensive attention. Technology of Fingerprint recognition is the earliest one and is app1ied widely in the all techniques of biometrics recognition, then is taking full advantage of the universality, uniqueness and permanency of the fingerprint, and gradually has taken place of traditional identification method that is based on symbol and number. Nowadays the technology of fingerprint identification is fully used in network, bank, finance, insurance and security. This paper research the basic principles and process of the fingerprint identification system,and focus on the pre-processing algorithms of fingerprint image and finally verify. In the fingerprint image processing section, thesis on preprocessing steps including specifications, image segmentation, median filtering, binarization, refinement, and so on, and each step of the way to in-depth analysis and research, is an image processing program. Part of the fingerprint feature extraction, fingerprint-based Matlab implementation details of feature extraction methods, and gives to the pseudo-algorithm. Fingerprint feature extraction is refined to get the details of fingerprint feature points (the endpoint and bifurcation points), this feature points contain a large number of false features, time-consuming and will affect the matching accuracy. Used and the distance to the edge of the false and counterfeit, makes the feature points to reduce the false front of nearly 1 / 3, and then extract a reliable feature point information, in order to achieve the fingerprint match. Part of the fingerprint match, the paper-based fingerprint minutiae matching algorithm, and conduct research.Keywords Fingerprint recognition; Pretreatment; Feature extraction; Matching目录摘要IAbstractII第1章 绪论51.1 指纹识别技术的背景51.2 指纹识别研究的目的和意义51.3 指纹识别在国内外的研究现状及分析61.3.1 国外研究现状61.3.2 国内研究现状71.3.3 研究现状分析71.4 本文研究的主要内容及工作安排81.4.1 研究的主要内容81.4.2 工作安排8第2章 指纹识别的组成及原理分析92.1 指纹识别系统的组成92.2 指纹识别的基本原理92.2.1 指纹的基本特征92.2.2 全局特征92.2.3 局部特征112.2.4 指纹识别的一般算法132.3 本章小结14第3章 指纹图像预处理153.1 对指纹图像进行分割153.2 对指纹图像进行二值化处理163.3 对指纹图像进行细化处理183.4 实验结果213.5 本章小结22第4章 指纹图像特征提取与匹配234.1 指纹图像特征提取234.1.1 指纹图像特征提取的方法234.1.2 特征点的提取234.1.3 指纹图像特征的去伪244.2 指纹图像的匹配264.2.1 指纹匹配算法综述264.2.2 指纹匹配过程274.3 实验结果284.4 本章小结30结论31致谢32参考文献33附录34千万不要删除行尾的分节符,此行不会被打印。在目录上点右键“更新域”,然后“更新整个目录”。打印前,不要忘记把上面“Abstract”这一行后加一空行第1章 绪论1.1 指纹识别技术的背景指纹识别是依据人的手指尖表面的脊、谷线分布状态来识别和验证人身份的方法。据考古学家证实,公元前7000年到6000年以前,指纹作为身份鉴别的工具已经在古叙利亚和中国开始应用。那时,一些粘土陶器上留有陶艺匠人的指纹。公元前2700多年前的周代,指纹被用于民间契约的签署,即画押,旨在保持契约的可信度。尽管指纹在我国应用较早,但由于长期缺乏专门的系统研究,未能上升到一门专门的学科。英国科学家Galton于1892年出版了指纹学和指纹分析法【1】,从此奠定了指纹科学研究的基础。1899年,英国学者亨利将指纹的特征及识别原理加以分析归纳,科学地提出了人的指纹各不相同,并提出了基于指纹特征进行识别的原理和方法,以后衍生出的各种识别方法都是基于该理论。到本世纪初,指纹学的研究基本成熟,这时的指纹鉴别,主要由指纹专家根据指纹知识凭经验判断。世界上许多国家都建立了指纹库,仅美国联邦调查局的指纹库中就存有二亿多张指纹卡。然而传统的指纹识别方法面临着从指纹库中人工查找、对比指纹卡速度慢、效率低、对人员要求高等问题。从二十世纪六十年代开始,随着计算机技术的发展,传统的指纹识别技术发生了重大变化。人们开始利用计算机来建立指纹识别系统。1.2 指纹识别研究的目的和意义一直以来,传统的验证个人身份的方法,都是验证那人是否持有某有效“物”或者某些“信息”,而不是验证到底是不是本人。只要“物”或“信息”的有效性得到确认,那么这个人就可以进行权利范围内的所有操作。但是这种方法没有考虑到“物”的可伪造性(也就是不唯一性)和丢失的可能,也没有考虑到“信息”的被盗或被破解,缺点显而易见。面对这样的问题,生物识别技术的优越性就显示出来了,目前已经成为安全技术研究的热点。要把生物特征用于身份识别,它就必须符合一定的要求:广泛性:每个人都应具有这方面的人体特征;唯一性:每个人具有的这方面的人体特征各不相同;稳定性:选择的这些人体特征不会随着时间的变化而发生改变;可采集性:选择的这些特征要便于提取、测量。基于以上特征,人们发展了语音识别、面部识别、虹膜识别、签名识别、指纹识别等多种生物识别技术。而指纹的独特性、持久性和防卫性能都比较高,是众多生物特征中综合性能最高的,成为了生物识别技术的首选。同时,指纹识别也是目前应用的最为广泛的生物识别技术。指纹识别就是用每个人独特的指纹特征构成口令,提高系统的安全性。随着科技的进步,个人电脑和光学扫描仪两项技术不断革新,指纹识别技术不断发展,为指纹识别技术的应用提供了更广阔的空间。现在利用指纹来完成身份验证和识别任务的系统己经大规模使用。比如:政府机要部门、国家重点实验室、军事要地、高级住宅等重要入口的身份验证,关键设备的启动控制,银行金库、金融系统等,公司、学校等单位的考勤,甚至部分家庭已经使用指纹锁。这种安全、方便、高效的身份鉴别方法会带给人们意想不到的便利:畅想一下,不需要再一记忆繁琐的密码、回家不需要带钥匙等等,那将是一种怎样的情景呢?指纹识别技术的广泛应用必将开创个人身份鉴别的新时代。1.3 指纹识别在国内外的研究现状及分析1.3.1 国外研究现状人类将指纹作为身份识别的依据和验证身份的方法已有悠久的历史。早在公元前70006000年以前,在叙利亚和中国,指纹作为身份鉴别的工具已经开始应用。中国古代就出现了在文契上的“按指为书”画押。在欧洲,1788年Mayer首次著文指出指纹的两个重要特性:唯一性和稳定性;现代的指纹匹配技术主要是16世纪后期产生。1872年Francis Galton提出了分叉点和端点开发人个指纹识别模式,基于这两种特征的指纹识别模式至今都在使用。并且这两种细节特征可以为每一枚指纹构建唯一的信息。Henry Faulds在1880年,第一次科学的提出了指纹的两个重要特征:一是任何两个不同手指的指纹脊线的式样(ridge pattern)不同,二是指纹脊线的式样在人的一生中不会改变。这一发现奠定了现代指纹识别技术的理论基础,也使得指纹识别在罪犯鉴定中得到应用。Francis Galton对指纹进行深入研究,并于1888年引入了特征点的分类技术。1899年,Edward Henry学习了Galton的指纹科学,建立了著名的“Henry System”用于指纹分类。使用精准的指纹索引给专家指纹识别带来极大的便利。早在20世纪初期,司法部门己经正式采用指纹作为有效的身份标记,一些指纹识别机构建立了世界范围的罪犯指纹档案库。1923年Purkinje首次对指纹进行了分类;19世纪晚期,F.Glton开展了关于指纹的广泛研究,并引入了指纹中的细节特征作为指纹识别的依据。这些研究成果和方法为现代指纹识别技术奠定了基础,至今,一些方法仍被广泛使用。1960年,美国联邦调查局、英国内务部(Home offiee in the UK)和法国巴黎警察局联合开始投巨资研发指纹识别系统,并于1975年成功推出了第一个商业化系统,随后,各国研究机构和许多大公司开始指纹识别技术的研究和产品开发工作。国际上著名的指纹识别系统有:美国联邦调查局的AFIS系统,日本NEC公司的指纹鉴定系统,北美英弗公司的指纹鉴别系统等。目前,随着数字化、信息化社会对自动身份鉴别技术的要求的不断提高和AFIS在司法领域取得了巨大成功,随着计算机硬件性能的飞速提高和价格的不断降低,随着普通大众对指纹识别了解的深入和接受,指纹识别技术已经突破了司法、侦探领域进入民用领域,并取得了快速的发展。传统指纹识别算法(主要用于司法、刑侦领域)主要考虑降低拒识率,一般需要人工协助处理,而且存在误识率高、计算速度慢、资源消耗大等问题,并不适合于民用领域。同时,民用市场对指纹识别算法在自动化程度、拒识率和误识率、响应时间、资源消耗等方面也提出了更高的要求。JAIN等人于1998年提出将指纹与人脸识别的结果融合;于2000年提出确定每个用户的特定参数的方法将指纹、脸像和手形的识别结果融合,并在2001年对多生物特征识别作了概述。2006年初,澳大利亚成功发行世界上第一本生物识别护照。2007年11月,美国国土安全部宣布所有入境美国的非美国公民都要接受数字拍照及双手十指指纹扫描。指纹识别即将迎来迅速普及的发展时期。2009年,美国成功对指纹识别系统进行了更新的研究【2】。1.3.2 国内研究现状我国利用指纹识别身份的历史最早可以追溯到秦朝, 1903年,中国青岛市警察局首次应用汉堡式指纹法。此后我国相继开展了指纹的应用及研究,还曾建立过“指纹学会”。刘紫宛编写的中华指纹法一书是我国最早的指纹专著。全国解放后,我国对指纹研究一直比较重视。1955年编制了中华人民共和国十指纹分析法。这可以说是我国指纹的科学时期。在国内,清华大学在80年代开始指纹识别的研究。中科院自动化所模式识别国家重点实验室自90年代以来,一直致力于“基于生物特征的身份鉴别”的研究,在指纹、虹膜、脸相识别等方面取得了很多的研究成果。北京大学视觉与听觉信息处理国家重点实验室先后承担了国家“七五”和“八五”,科技攻关项目,对指纹识别进行了长期的基础性研究,提出了一整套独创的理论和高效实用的算法。另外,自九十年代初以来,我国的北大方正集团、长春鸿达集团、西安青松集团等机构分别以所在地高校为技术依托,陆续开展了这方面的研究工作。总的来说,国内开展了很多研究,而且取得了很多成果。2002年,清华大学实现了在海量数据库上的人脸和指纹综合识别系统,在识别的过程采用的融合策略是先用人脸特征进行比对得到前n个候选,然后在这个范围内用指纹特征再进行比对。迄今为止,还没有综合生物特征的识别系统的产品问世,综合身份识别系统的研究有待于进一步发展。2009年中北大学信息与通信工程学院提出了一种基于傅立叶变换的指纹图像增强技术,大大提高了图像的清晰度。为后来的指纹识别技术作出了较大贡献。1.3.3 研究现状分析现在国内外指纹识别大都采用基于细节特征点的指纹识别技术,即采用基于图像处理的指纹识别算法,其中比较有代表性的有两种。一种是基于方向滤波增强,并在指纹细化图上提取特征点的算法,另一种是直接从指纹灰度图上提取特征点的算法。指纹识别作为一种热门的生物识别技术受到越来越多人的关注,国内外许多机构和学者都采用了很多不同的算法对指纹图像进行预处理和匹配。但有些算法会由于指纹图像的噪音、皮肤弹性引起的非线性形变等多方面因素,导致在识别过程中出现误差,影响识别率等【3】。1.4 本文研究的主要内容及工作安排1.4.1 研究的主要内容通过阅读大量的文献资料,本文深入研究了指纹识别算法所包含的主要方面:指纹图像预处理:全文研究的重点是指纹图像预处理算法。预处理的目的是改善输入指纹图像的质量,以提高特征提取的准确性。本文采用灰度分割法对质问图像进行分割。利用中值滤波进行去噪。通过自适应二值化的方法处理指纹图像,最后再对图像进行细化以及去除毛刺,断裂等干扰。指纹图像特征提取:对指纹图像的特征点进行提取。由于经过预处理后的细化图像上存在大量的伪特征点,所以提取大量的伪特征点,这些伪特征点的存在,不但使匹配的速度大大降低,还使指纹识别性能急剧下降,造成识别系统的误拒率和误识率的上升,因此在进行指纹匹配之前,尽可能将伪特征点去除,针对提取出指纹细节特征点含有大量的伪特征这一问题,提出了一种边缘信息判别法,有效地去除了边界伪特征点,再根据脊线结构特性去除其毛刺和短脊等伪特征点,显的减少了伪特征点。指纹匹配:对指纹图像的匹配算法进行研究。特征匹配是识别系统的关键环节,匹配算法的好坏直接影响识别的性能、速度和效率。为了克服指纹图像非线性形变的影响,采用基于结构特征的点匹配算法,对校准后的点集进行匹配,匹配的特征点个数在两个点集中所占比例大约百分之六十五的范围内就可判为匹配成功。1.4.2 工作安排本论文共分四章,每章的主要安排如下:第一章为绪论部分,第一章绪论。对指纹识别技术及系统的研究目的、意义及国内外发展动态进行了概述。比对其研究现状进行分析。第二章为指纹识别技术的组成及原理分析。简单介绍了指纹识别的工作流程,以及指纹识别的基本原理,包括指纹结构特征、分类方式等。第三章研究了指纹图像预处理的几种技术,如指纹图像归一化、图像分割、图像滤波、图像二值化、图像细化等算法,并运用Matlab编程软件实现了各阶段的实验结果。第四章对指纹图像进行特征提取与匹配。是在细化后的指纹图像的基础上进行的。对指纹细节特征提取算法进行了简单的介绍,并对提取出的特征点进行匹配。并且得出了结果。第2章 指纹识别的组成及原理分析2.1 指纹识别系统的组成指纹识别技术是指使用取像设备读取指纹图像,通过识别软件提取出指纹图像中的特征数据,然后根据匹配算法得到的结果鉴别指纹所有人身份的生物特征识别技术。指纹识别系统主要涉及三大步骤:指纹图像预处理、特征提取、特征匹配三个部分,其中预处理部分又可分为归一化、图像滤波增强、二值化和细化等几个步骤。系统流程框图如图11所示。下面对这三个个部分做一下简单的介绍。指 纹预处理指 纹特征提取指纹匹配指 纹识 别指纹库图11指纹识别系统流程图2.2 指纹识别的基本原理2.2.1 指纹的基本特征指纹其实是比较复杂的。与人工处理不同,许多生物识别技术公司并不直接存储指纹的图象。多年来在各个公司及其研究机构产生了许多数字化的算法(美国有关法律认为,指纹图象属于个人隐私,因此不能直接存储指纹图象)。但指纹识别算法最终都归结为在指纹图象上找到并比对指纹的特征。指纹识别系统中,通常采用全局和局部两种层次的结构特征。两枚指纹可能具有相同的全局特征,但局部特征却不可能完全相同。2.2.2 全局特征全局特征是指那些用人眼直接就可以观察到的特征,包括:基本纹路图案环型(loop),弓型(arch),螺旋型(whorl)如图21所示。其他的指纹图案都基于这三种基本图案。仅仅依靠图案类型来分辨指纹是远远不够的,这只是一个粗略的分类,但通过分类使得在大数据库中搜寻指纹更为方便。 环型 弓型 螺旋型图21环型、弓型、螺旋型指纹图像模式区是指指纹上包括了总体特征的区域,即从模式区就能够分辨出指纹是属于那一种类型的。有的指纹识别算法只使用模式区的数据。Secure Touch的指纹识别算法使用了所取得的完整指纹而不仅仅是模式区进行分析和识别,如图22所示。图22模式区 核心点位于指纹纹路的渐进中心,它在读取指纹和比对指纹时作为参考点。许多算法是基于核心点的,既只能处理和识别具有核心点的指纹。核心点对于Secure Touch的指纹识别算法很重要,但没有核心点的指纹它仍然能够处理,如图23所示。图23核心点三角点位于从核心点开始的第一个分叉点或者断点、或者两条纹路会聚处、孤立点、折转处,或者指向这些奇异点。三角点提供了指纹纹路的计数跟踪的开始之处,如图24所示。图24三角点指模式区内指纹纹路的数量。在计算指纹的纹数时,一般先在连接核心点和三角点,这条连线与指纹纹路相交的数量即可认为是指纹的纹数,如图25所示。图25纹数2.2.3 局部特征局部特征是指指纹上的节点的特征,这些具有某种特征的节点称为特征点。两枚指纹经常会具有相同的总体特征,但它们的局部特征-特征点,却不可能完全相同。1、指纹的特征点指纹纹路并不是连续的、平滑笔直的,而是经常出现中断、分叉或打折。这些断点、分叉点和转折点就称为“特征点”。就是这些特征点提供了指纹唯一性的确认信息。指纹上的节点有四种不同特性:2、特征点的分类有以下几种类型,最典型的是终结点和分叉点。终结点(Ending):一条纹路在此终结,如图26所示。图26终结点分叉点(Bifurcation):一条纹路在此分开成两条或更多的纹路,如图27所示。图27分叉点分歧点(Ridge Divergence):两条平行的纹路在此分开,如图28所示。图28分歧点孤立点(Dot or Island):一条特别短的纹路,以至于成为一点,如图29所示。图29孤立点环点(Enclosure):一条纹路分开成为两条之后,立即有合并成为一条,这样形成的一个小环称为环点,如图210所示。图210环点短纹(Short Ridge):一端较短但不至于成为一点的纹路,如图211所示。图211短纹方向(Orientation):节点可以朝着一定的方向。曲率(Curvature):描述纹路方向改变的速度。位置(Position):节点的位置通过坐标来描述,可以是绝对的,也可以是相对于三角点或特征点的【4】。2.2.4 指纹识别的一般算法(1) 指纹图象预处理在指纹识别过程中,输入的指纹图像由于各种原因的影响,是一幅含噪声较多的灰度图像,预处理的目的就是去除图像中的噪声,使图像画面清晰,边缘明显,把它变成一幅清晰的点线图,以便于提取正确的指纹特征。指纹图像预处理环节在整个指纹识别系统中具有重要的地位和作用,它的好坏直接影响着指纹识别的效果。预处理一般分为四步进行:图像分割、图像滤波、二值化和细化。首先,对图像进行分割。由于有的原始图像跟其背景区域相混合,在背景和指纹图像之间存在一道白色区域,所以需要对原始指纹图像进行背景分离,消除最外面的边框。我们可以根据灰度的大小对图像进行初步处理,得到初步处理然后对指纹图像进行归一化及分割处理,消除剩下的背景区域。其次,指纹预处理过程中最重要的一步就是对指纹图像进行滤波去噪,它是指纹图像预处理需要解决的核心问题。图像滤波的目的是在增强脊线谷线结构对比度的同时抑制噪声,连接断裂的脊线和分离粘连的脊线,按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息【5】。再次,图像经滤波处理后,其中的纹线(脊)部分得到了增强,不过脊的强度并不完全相同,表现为灰度值的差异。二值化的目的就是使脊的灰度值趋向一致,使整幅图像简化为二元信息在指纹识别中,一方面对图像信息进行了压缩,保留了纹线的主要信息,节约了存储空间,另一方面还可以去除大量的粘连,为指纹特征的提取和匹配作准备。最后,指纹图像二值化后,纹线仍具有一定的宽度,而指纹识别只对纹线的走向感兴趣,不关心它的粗细。细化的目的是为了删除指纹纹线的边缘像素,使之只有一个像素宽度,减少冗余的信息,突出指纹纹线的主要特征,从而便于后面的特征提取。细化时应保证纹线的连接性,方向性和特征点不变,还应保持纹线的中心基本不变。(2) 特征提取目前的指纹识别普遍采用的指纹特征是细节点(minutiae),分为端点和分叉点。指纹的特征可以反映不同的指纹相互之间相似的程度。指纹的特征信息很多。这些所有的指纹特征信息构成了庞大的指纹特征集合。一组好的特征不仅要能达到身份识别的基本要求,而且对噪声、畸变和环境条件不敏感。原始指纹图像经预处理后得到的是一幅细化的二值图像,下一步要做的工作就是对细化后的图像进行特征提取,得到可以识别不同指纹的关键特征。特征提取把指纹图像的纹线走向,纹线端点、交叉点等能充分表示该指纹唯一性的特征用数值的形式表达出来。为了比对的准确性,要求特征提取算法尽可能多地提取有效特征,同时滤除由各种原因造成的虚假特征。一般在指纹识别技术中只使用两种细节特征点:端点和分叉点,其他类型特征点出现的机率很小,这两类特征点在指纹中出现的机会最多、最稳定,比较容易获取。如何准确高效的提取指纹特征是指纹细节特征提取要开展的工作,或者说是采取什么样的步骤和方法,是后面指纹匹配工作的基础。(3) 指纹匹配特征匹配主要是细节特征的匹配,将新输入指纹的细节特征值与指纹库中所存指纹的细节特征值进行比对,找出最相似的指纹作为识别的输出结果,也就是所说的指纹验证识别过程,它是指纹识别系统的最终目的。由于各种因素的影响,同一指纹两次输入所得的特征模板很可能不同。因此,只要有输入指纹的特征模板与所存储的模板相似时,就说这两个指纹匹配。于是产生了有关衡量标准的问题。通常,匹配结果用“匹配度”来表示。当匹配度大于某一阈值时,认为两指纹匹配;相反,当小于该阈值时,认为不匹配。阈值大小通常根据经验等因素人为设定【6】。2.3 本章小结本章对指纹识别原理及指纹识别系统作了简单的介绍,介绍了指纹基本的分类方式、全局特征、局部特征等基本的指纹识别原理;并且对指纹识别各个阶段的算法进行详细的分析与介绍,目的在于使读者对指纹识别系统的组成、识别原理和技术等方面有一个总体认识,为后面的理论研究提供现实基础。第3章 指纹图像预处理刚获得的图象有很多噪音。这主要由于平时的工作和环境引起的,比如,手指被弄脏,手指有刀伤、疤、痕、干燥、湿润或撕破等。图象增强是减弱噪音,增强脊和谷的对比度。想得到比较干净清晰的图象并不是容易的事情。为这个目标而为处理指纹图象所涉及的操作是设计一个适合、匹配的滤镜和恰当的阀值。有很多图象增强的方法。大多数是通过过滤图象与脊局部方向相匹配。图象首先分成几个小区域(窗口),并在每个区域上计算出脊的局部方向来决定方向图。可以由空间域处理,或经过快速2维傅立叶变换后的频域处理来得到每个小窗口上的局部方向。设计合适的,相匹配的滤镜,使之实用于图象上所有的象素(空间场是其中的一个)。依据每个象素处脊的局部走向,滤镜应增强在同一方向脊的走向,并且在同一位置,减弱任何不同于脊的方向。后者含有横跨脊的噪音,所以其垂直于脊的局部方向上的那些不正确的“桥”会被滤镜过滤掉。所以,合适的、匹配的滤镜可以恰到好处地确定脊局部走向的自身的方向,它应该增强或匹配脊而不是噪音。图象增强,噪音减弱后,我们准备开始选取一些脊。虽然,在原始灰阶图象中,其强度是不同的而按一定的梯度分布,但它们真实的信息被简单化为二元:脊及其相对的背景。二元操作使一个灰阶图象变成二元图象,图象在强度层次上从原始的256色降为2色。图象二元化后,随后的处理就会比较容易。二元化的困难在于,并不是所有的指纹图象有相同的阀值,所以一般不采取从单纯的强度入手,而且单一的图象的对照物是变化的,比如,手在中心地带按的比较紧。因此一个叫“局部自适应的阀值(locally adaptive thresholding)”的方法被用来决定局部图象强度的阀值。在节点提取之前的最后一道工序是“细化(thinning)”。细化是将脊的宽度降为单个象素的宽度。一个好的细化方法是保持原有脊的连续性,降低由于人为因素所造成的影响。人为因素主要是毛刺,带有非常短的分支而被误认为是分叉。认识到合法的和不合法的节点后,在特征提取阶段排除这些节点。指纹图像预处理的目的主要是为特征值提取的有效性、准确性作好准备【8】。图像的预处理大致可以划分为以下几步:分割、平滑滤波、二值化和细化。主要流程如下图31所示:灰度图分割滤波二值化细化图31 预处理主要流程3.1 对指纹图像进行分割由于获得的指纹图像跟其背景区域相混合,所以需要对原始指纹图像进行背景分离。对指纹图像进行分割处理,消除剩下的背景区域。a先对初步处理后的指纹图像进行归一化处理,在此利用公式如下: (31)如果,则把灰度值归一化为255背景处理,其中和为期望的均值和方差,根据实际情况而定,和为指纹图像的均值和方差。b对指纹图像进行分块,将其分为的小块,如果是背景区域,其灰度的方差较小,而前景区的指纹图像的方差较大,所以对每个小块求其方差,再设定一个阈值,小于阈值的方块区域设置为背景区域,将其灰度值设定为255,而大于阈值的区域的灰度值保持不变,从而可以将指纹图像从背景区域很好的分离。3.2 对指纹图像进行二值化处理由于分割后的图像质量仍然不是很好,所以需要对其进行滤波、消除毛刺、空洞处理和二值化处理,以使指纹图像清晰,消除不必要的噪声,以利于进一步的辨识。指纹图像二值化作为指纹预处理过程的一部分,是进行指纹图像细化处理的基础。目前指纹细化方法都是基于二值指纹图像进行的。对指纹图像二值化的好处在于使得图像的几何性质只0和1的位置有关,不再涉及像素的灰度值,使处理变得简单,这给存储和处理带来了很大的方便,同时也提高了系统的经济实用。一个好的算法可以得到一个高质量的二值图像。反之,如果该阶段引入噪声,就会直接降低图像质量,影响识别精度。对指纹图像进行二值化,其基本要求就是二值化后的图像能真实地再现原指纹。具体要求为:1脊线中不出现空白;2二值化后的脊线基本保持原来指纹的特征;3指纹的纹线不应有太多的间断和相连;4指纹纹线间的间距应大致相同。指纹图像首先要进行中值滤波处理,去除噪声。然后进行二值化过程,变成二值图像。由于原始指纹图像不同区域深浅不一,如对整幅图像用同一阈值进行二值分割,会造成大量有用信息的丢失。这里我们使用自适应阈值二值化的思想,对每块指纹图像,选取的阈值应尽量使该块图像内大于该阈值的像素点数等于小于该阈值的像素点数。一般灰度图像二值化的变换函数用下列公式表示,见式(32): (32)公式(32)中为指定的阈值,为灰度值。自适应阈值算法【9】首先是利用固定阈值算法的思想,然后根据图像中每一部分的明暗度来调整阈值。本文首先把图像分为若干个的方块,每一块根据自己的阈值进行二值化。这种算法充分利用了指纹图中脊线与谷线宽度大致相同的特点,即二值化后黑白像素的个数也应大致相同,首先利用固定阈值算法的特点对指纹图像中的每块确定一个大致的阈值,然后再利用自适应的思想对阈值进行准确的调整,即阈值的取值合适时图像是最光滑的,既没有“黑洞”阈值过大,也没有“白点”阈值过小,所以01之间的转换次数最少。下面为块区域阈值的选取算法:1将指纹图像划分为不重叠的大小为的块,求取该区域内所有像素的灰度平均值。在综合考虑算法速度和处理效果两方面的条件下,本文分块尺寸为8×8;为块的灰度平均值见式(33): (33)2计算区域内的和的值,=灰度值大于等于的像素点的个数。=灰度值小于的像素点的个数;3如果,则为阈值;4若,则,否则,返回第二步。自适应阈值二值化的流程图如图32所示:计算每块的灰度均值T计算该块参数Nh和NlT为该块阈值根据阈值T对该块进行二值化:灰度值>T置255;灰度值T置0图32自适应阈值二值化流程图图32中为该块指纹图像的平均灰度值、分别为第块指纹图像中灰度值大于等于和小于的像素点数,是分块尺寸(像素)。3.3 对指纹图像进行细化处理指纹图像处理中物体的形状信息是十分重要的,为了提取指纹图像特定区域的特征,对指纹图像通常需要采用细化算法处理,得到与原来指纹图像形状近似的由简单的弧或曲线组成的图形,这些细线处于物体的中轴附近,这就是所谓的指纹图像的细化。细化方法不同,细化结果就有差异。在指纹识别中要求在不改变原来指纹图像的拓朴连通性的同时,细化的结果应为严格的八邻域图像骨架;纹线中除去特征点以外,每个像素均只与相邻两个像素为八邻域,抹去任意一像素都将破坏纹线的连接性。概括起来说就是纹线细化处理要满足收敛性、连接性、拓朴性、保持性、细化性、中轴性、快速性的要求。目前为止,关于细化方法的研究工作已有很多成果,所采用的方法从使用的观点来看,比较多的是采用模板匹配的方法(如迭代法、OPTA单连通法等)。这种方法是根据某个像素的局部邻域(如3×3,5×5等)的图像特征对其进行处理,此外也有采用边缘搜索编码、外轮廓计算以及神经网络等细化方法。从处理的过程来看,主要可以分为串行和并行两类,前者对图像中当前像素处理依据其邻域内像素的即时化结果,且不同的细化阶段采用不同的处理方法;后者对当前的像素处理该像素及其邻域内各像素的前一轮迭代处理的结果,自始至终采用相同的细化准则。对于任意形状的区域,细化实质上是腐蚀操作的变体,细化过程中要根据每个像素点的八个相邻点的情况来判断该点是否可以剔除或保留。 (1) (2) (3) (4) (5) (6)(7)图33 根据某点的八个相邻点的情况来判断该点是否能删除图33给出了当前需要处理的像素点在不同的八邻域条件下的情况,可以看出:(1)不能删,因为它是个内部点,我们要求的是骨架,如果连内部点也删了,骨架也会被掏空的;(2)不能删,和(1)是同样的道理;(3)可以删,这样的点不是骨架;(4)不能删,因为删掉后,原来相连的部分断开了;(5)可以删,这样的点不是骨架;(6)不能删,因为它是直线的端点,如果这样的点删了,那么最后整个直线也被删了,剩不下什么;(7)不能删,因为孤立点的骨架就是它自身。总结上图,有如下的判据:(1)内部点不能删除;(2)孤立点不能删除;(3

    注意事项

    本文(指纹识别系统论文.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开