欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    工厂供电毕业设计1.doc

    • 资源ID:3942443       资源大小:1.09MB        全文页数:46页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    工厂供电毕业设计1.doc

    毕 业 设 计(论文)(说 明 书)题 目: 工厂供电毕业设计姓 名: 编 号: 平顶山工业职业技术学院2012 年 5 月 20 日平顶山工业职业技术学院毕 业 设 计 (论文) 任 务 书姓名 专业 矿山机电 任 务 下 达 日 期 2012 年 2 月 20 日设计(论文)开始日期 2012 年 2 月 26 日设计(论文)完成日期 2012 年 5 月 20 日设计(论文)题目: 工厂供电毕业设计 A·编制设计 B·设计专题(毕业论文) 指 导 教 师 系(部)主 任 年 月 日平顶山工业职业技术学院毕业设计(论文)答辩委员会记录 电力工程 系 矿山机电 专业,学生 于 年 月 日进行了毕业设计(论文)答辩。设计题目: 专题(论文)题目: 指导老师: 答辩委员会根据学生提交的毕业设计(论文)材料,根据学生答辩情况,经答辩委员会讨论评定,给予学生 毕业设计(论文)成绩为 。答辩委员会 人,出席 人答辩委员会主任(签字): 答辩委员会副主任(签字): 答辩委员会委员: , , , , , , 平顶山工业职业技术学院毕业设计(论文)评语第 页共 页学生姓名: 专业 年级 毕业设计(论文)题目: 评 阅 人: 指导教师: (签字) 年 月 日成 绩: 系(科)主任: (签字) 年 月 日毕业设计(论文)及答辩评语: 摘 要随着工业生产的发展和科学技术的进步工厂的供电系统的控制、信号和监测工作,已经由人工管理、就地监测发展为远动化,实现遥控、遥信、和遥测。工厂供电系统远动化后,不仅可以提高工厂供电系统的自动化水平,而且可在一定程度上实现工厂供电系统的优化运行,能够及时处理事故,减少事故停电时间,更好地保证工厂供电系统的安全经济运行,工厂供电是工厂企业生产生活的必要保障。经过计算比较,根据工厂实际情况选择科学且经济性高的电器设备,从供电的优质、可靠、经济等性能来综合考虑采用最优化的电气设备和供电方式。关键词 : 短路电流 功率 变电所目 录第1章 负荷计算及功率补偿11.1 负荷计算的内容和目的11.2 负荷计算的方法21.3 全厂负荷计算21.4 功率补偿21.5 无功功率补偿3第2章 变电所位置和形式的选择52.1 变电所所址选择的基本要求52.2 变电所所址选择应具备的条件6第3章 变电所主变压器及主接线方案的选择73.1 变电所主变压器的选择83.2 变电所主接线方案的选择83.3 主接线方案的技术经济比较10第4章 短路电流的计算124.1 绘制计算电路124.2 短路电流计算的目的及方法124.3 本设计采用标幺制法进行短路计算15第5章 变电所一次设备的选择及校验185.1 10kV侧一次设备的选择校验185.2 380V侧一次设备的选择校验225.3 高低压母线的选择24第6章 导线、变电所高低压线路的选择256.1 10kV高压进线和引入电缆的选择256.2 380低压出线的选择256.3 作为备用电源的高压联络线的选择校验29第7章 变电所二次回路的方案及断电保护的确定317.1 变电所二次回路方案选择317.2 断电保护32第8章 防雷与接地368.1 防 雷368.2 接地37设计总结38参考文献39致 谢40第1章 负荷计算及功率补偿 全厂总降压变电所的负荷计算,是在车间负荷计算的基础上进行的。考虑车间变电所变压器的功率损耗,从而求出全厂总降压变电所高压侧计算负荷及总功 率因数。列出负荷计算表、表达计算成果。1.1 负荷计算的内容和目的1. 计算负荷又称需要负荷或最大负荷。计算负荷是一个假想的持续性的 负荷,其热效应与同一时间内实际变动负荷所产生的最大热效应相等。在配电设计中,通常采用 30 分钟的最大平均负荷作为按发热条件选择电器或导体的依据。2.尖峰电流指单台或多台用电设备持续 1 秒左右的最大负荷电流。一般 取启动电流上午周期分量作为计算电压损失、 电压波动和电压下降以及选择电器 和保护元件等的依据。在校验瞬动元件时,还应考虑启动电流的非周期分量。 3.平均负荷为一段时间内用电设备所消耗的电能与该段时间之比。常选用最大负荷班(即有代表性的一昼夜内电能消耗量最多的一个班)的平均负荷,有时也计算年平均负荷。平均负荷用来计算最大负荷和电能消耗量。1.2 负荷计算的方法 负荷计算的方法有需要系数法、利用系数法及二项式等几种。本设计采用需 要系数法确定。主要计算公式有:有功功率:P30 = Pe·Kd 无功功率: Q30 = P30 ·tg 视在功率: S3O = P30/Cos 计算电流: I30 = S30/3UN1.3 全厂负荷计算取 Kp = 0.92; Kq = 0.95 根据上表可算出:P30i = 6520kW; Q30i = 5463kvar 则 P30 = KPP30i = 0.9×6520kW = 5999kW Q30 = KqQ30i = 0.95×5463kvar =5190kvar S30 =(P302+Q302)1/2 7932KV·A I30 = S30/3UN 94.5A COS = P30/Q30 = 5999/7932 0.751.4 功率补偿由于设计中上级要求COS0.9,而由上面计算可知COS=0.75<0.9,因此需要进行无功补偿。综合考虑在这里采用并联电容器进行路断路器 QF11 和 QF12 的外侧,靠近电源方向,因此称为外桥式结线。这种主结线的运行灵活性也较好,供电可靠性同样较高,适用于一、二级负荷的工厂。但与内桥式结线适用的场合有所不同。如果某台变压器例如 T1 停 电检修或发生故障时,则断开 QF11 ,投入QF10(其两侧 QS 先合),使两路电 源进线又恢复并列运行。这种外桥式适用于电源线路较短而变电所负荷变动较大适用经济运行需经常切换的总降压变电所。当一次电源电网采用环行结线时,也宜于采用这种结线,使环行电网的穿越功率不通过进线断路器 QF11 、QF12 ,这对改善线路断路器的工作及其继电保护的整定都极为有利。a、一、二次侧均采用单母线分段的总降压变电所主电路图 这种主结线图兼有上述两种桥式结线的运行灵活性的优点,但所用高压开关键设备较多,可供一、二级负荷,适用于一、二次侧进出线较多的总降压变电所 b、一、二次侧均采用双母线的总降压变电所主电路图采用双母线结线较之 采用单母线结线,供电可靠性和运行灵活性大大提高,但开关设备也大大增加,从而大大增加了初投资,所以双母线结线在工厂电力系统在工厂变电所中很少运 用主要用与电力系统的枢纽变电所。本次设计的电机修造厂是连续运行,负荷变动较小,电源进线较短(2.5km),主变压器不需要经常切换,另外再考虑到今后 的长远发展。采用一、二侧单母线分段的总降压变电所主结线(即全桥式结线) 。1.5 无功功率补偿 无功功率的人工补偿装置:主要有同步补偿机和并联电抗器两种。由于并联电抗器具有安装简单、运行维护方便、有功损耗小以及组装灵活、扩容方便等优点,因此并联电抗器在供电系统中应用最为普遍。该厂380V侧最大负荷时的功率因数只有0.75。而供电部门要求该厂10KV进线侧最大负荷时功率因数不低于0.9。考虑到主变压器的无功损耗元大于有功损耗,因此380V侧最大负荷时功率因数应稍大于0.9,暂取0.92来计算380V侧所需无功功率补偿容量:=(tan-tan)=810.8tan(arccos0.75)-tan(arccos0.92) =369.66 kvar参照1.1图,选PGJ1型低压自动补偿评屏,并联电容器为BW0.4-14-3型,采用其方案1(主屏)1台与方案3(辅屏)4台相结合,总共容量为84kvar5=420kvar。补偿前后,变压器低压侧的有功计算负荷基本不变,而无功计算负荷=(727.6-420)kvar=307.6 kvar,视在功率=867.2 kVA,计算电流=1317.6 A,功率因数提高为cos=0.935。 在无功补偿前,该变电所主变压器T的容量为应选为1250kVA,才能满足负荷用电的需要;而采取无功补偿后,主变压器T的容量选为1000kVA的就足够了。同时由于计算电流的减少,使补偿点在供电系统中各元件上的功率损耗也相应减小,因此无功补偿的经济效益十分可观。因此无功补偿后工厂380V侧和10kV侧的负荷计算如表1.2所示。图1.1 PGJ1型低压无功功率自动补偿屏的接线方案表1.2无功补偿后工厂的计算负荷项目cos计算负荷/KW/kvar/kVA/A380V侧补偿前负荷0.75810.8727.610891655380V侧无功补偿容量-420380V侧补偿后负荷0.935810.8307.6867.21317.6主变压器功率损耗0.015=130.06=5210KV侧负荷计算0.935823.8359.6898.952第2章 变电所位置和形式的选择2.1 变电所所址选择的基本要求配变电所位置选择,应根据下列要求综合考虑确定:(1) 接近负荷中心。(2) 进出线方便。(3) 接近电源侧。(4) 设备吊装、运输方便。(5) 不应设在有剧烈振动的场所。(6) 不宜设在多尘、水雾(如大型冷却塔)或有腐蚀性气体的场所,如无法远离时,不应设在污源的下风侧。(7) 不应设在厕所、浴室或其他经常积水场所的正下方或贴邻。(8) 不应设在爆炸危险场所以内和不宜设在有火灾危险场所的正上方或正下方,如布置在爆炸危险场所范围以内和布置在与火灾危险场所的建筑物毗连时,应符合现行的爆炸和火灾危险环境电力装置设计规范的规定。(9) 配变电所为独立建筑物时,不宜设在地势低洼和可能积水场所。(10) 高层建筑地下层配变电所的位置,宜选择在通风、散热条件较好的场所。(11) 配变电所位于高层建筑(或其他地下建筑)的地下室时,不宜设在最底层。当地下仅有一层时,应采取适当抬高该所地面等防水措施。并应避免洪水或积水从其他渠道淹渍配变电所的可能性。2.2 变电所所址选择应具备的条件装有可燃性油浸电力变压器的变电所,不应设在耐火等级为三、四级的建筑中。在无特殊防火要求的多层建筑中,装有可燃性油的电气设备的配变电所,可设置在底层靠外墙部位,但不应设在人员密集场所的上方、下方、贴邻或疏散出口的两旁。 高层建筑的配变电所,宜设置在地下层或首层;当建筑物高度超过100m时,也可在高层区的避难层或上技术层内设置变电所。一类高、低层主体建筑内,严禁设置装有可燃性油的电气设备的配变电所二类高、低层主体建筑内不宜设置装有可燃性油的电气设备的配变电所,如受条件限制亦可采用难燃性油的变压器,并应设在首层靠外墙部位或地下室,且不应设在人员密集场所的上下方、贴邻或出口的两旁,并应采取相应的防火和排油措施。大、中城市除居住小区的杆上变电所外,民用建筑中不宜采用露天或半露天的变电所,如确因需要设置时,宜选用带防护外壳的户外成套变电所。第3章 变电所主变压器及主接线方案的选择3.1 变电所主变压器的选择 根据工厂的负荷性质和电源情况,工厂变电所的主变压器考虑有下列两种可供选择的方案: a)装设一台变压器型号为S9型,而容量根据式,为主变压器容量,为总的计算负荷。选=1000 KVA>=898.9 KVA,即选一台S9-1000/10型低损耗配电变压器。至于工厂二级负荷所需的备用电源,考虑由邻近单位相联的高压联络线来承担。 b)装设两台变压器 型号为S9型,而每台变压器容量根据式(3-1)、(3-2)选择,即898.9 KVA=(539.34629.23)KVA(3-1)=(134.29+165+44.4) KVA=343.7 KVA(3-2)因此选两台S9-630/10型低损耗配电变压器。工厂二级负荷所需的备用电源,考虑由邻近单位相联的高压联络线来承担。主变压器的联结组均为Yyn0 。3.2 变电所主接线方案的选择 按上面考虑的两种主变压器方案可设计下列两种主接线方案:3.2.1装设一台主变压器的主接线方案如图3-1所示Y0Y0S9-1000GG-1A(F)-0710/0.4kV联络线(备用电源)GG-1A(F)-54GW口-1010kVFS4-10GG-1A(J)-03GG-1A(J)-03GG-1A(F)-07GG-1A(F)-54GG-1A(F)-07GG-1A(F)-07主变联络(备用)220/380V高压柜列图3-1 装设一台主变压器的主接线方案3.2.2装设两台主变压器的主接线方案 如图3-2所示Y0Y0220/380VS9-630GG-1A(F)GG-1A(F)-0710/0.4kVS9-63010/0.4kV联络线(备用电源)GG-1A(F)-54GG-1A(F)-113、11GW口-1010kVFS4-10GG-1A(J)-01GG-1A(F)-113GG-1A(F)-11GG-1A(J)-01GG-1A(F)-96GG-1A(F)-07GG-1A(F)-54主变主变联络(备用)高压柜列-96图3-2 装设两台主变压器的主接线方案3.3 主接线方案的技术经济比较 表3-3 主接线方案的技术经济比较比较项目装设一台主变的方案装设两台主变的方案技术指标供电安全性满足要求满足要求供电可靠性基本满足要求满足要求供电质量由于一台主变,电压损耗较大由于两台主变并列,电压损耗较小灵活方便性只有一台主变,灵活性稍差由于有两台主变,灵活性较好扩建适应性稍差一些更好一些经济指标电力变压器的综合投资额查得S9-1000/10的单价为15.1万元,而变压器综合投资约为其单价的2倍,因此综合投资约为2*15.1=30.2万元查得S9-630/10的单价为10.5万元,因此两台变压器的综合投资约为4*10.5=42万元,比一台主变方案多投资11.8万元高压开关柜(含计量柜)的综合投资额查得GG-1A(F)型柜可按每台4万元计,其综合投资可按设备的1.5倍计,因此高压开关柜的综合投资约为4*1.5*4=24万元本方案采用6台GG-1A(F)柜,其综合投资约为6*1.5*4=36万元,比一台主变方案多投资12万元电力变压器和高压开关柜的年运行费主变的折旧费=30.2万元*0.05=1.51万元;高压开关柜的折旧费=24万元*0.06=1.44万元;变配电的维修管理费=(30.2+24)万元*0.06=3.25万元。因此主变和高压开关柜的折旧和维修管理费=(1.51+1.44+3.25)=6.2万元主变的折旧费=42万元*0.05=2.1万元;高压开关柜的折旧费=36万元*0.06=2.16万元;变配电的维修管理费=(42+36)万元*0.06=4.68万元。因此主变和高压开关柜的折旧和维修管理费=(2.1+2.16+4.68)=8.94万元,比一台主变方案多投资2.74万元供电贴费主变容量每KVA为800元,供电贴费=1000KVA*0.08万元/KVA=80万元供电贴费=2*630KVA*0.08万元=100.8万元,比一台主变多交20.8万元从上表可以看出,按技术指标,装设两台主变的主接线方案略优于装设一台主变的主接线方案,但按经济指标,则装设一台主变的主接线方案远由于装设两台主变的主接线方案,因此决定采用装设一台主变的主接线方案。方案:单母线分段带旁路。优点:具有单母线分段全部优点,在检修断路器时不至中断对用户供电。缺点:常用于大型电厂和变电中枢,投资高。方案:高压采用单母线、低压单母线分段。优点:任一主变压器检修或发生故障时,通过切换操作,即可迅速恢复对整个变电所的供电。缺点:在高压母线或电源进线进行检修或发生故障时,整个变电所仍需停电。以上三种方案均能满足主接线要求,采用三方案时虽经济性最佳,但是其可靠性相比其他两方案差;采用方案二需要的断路器数量多,接线复杂,它们的经济性能较差;采用方案一既满足负荷供电要求又较经济,故本次设计选用方案。根据所选的接线方式,画出主接线图,参见附图三变电所高压电气主接线图。第4章 短路电流的计算4.1 绘制计算电路 500MVAK-1K-2LGJ-150,8km10.5kVS9-10000.4kV(2)(3)(1)系统图4-1 短路计算电路4.2 短路电流计算的目的及方法短路电流计算的目的是为了正确选择和校验电气设备,以及进行继电保护装置的整定计算。进行短路电流计算,首先要绘制计算电路图。在计算电路图上,将短路计算所考虑的各元件的额定参数都表示出来,并将各元件依次编号,然后确定短路计算点。短路计算点要选择得使需要进行短路校验的电气元件有最大可 能的短路电流通过。接着,按所选择的短路计算点绘出等效电路图,并计算电路中各主要元件的阻抗。在等效电路图上,只需将被计算的短路电流所流经的一些主要元件表示出来,并标明其序号和阻抗值,然后将等效电路化简。对于工厂供电系统来说,由于将电力系统当作无限大容量电源,而且短路电路也比较简单,因此一般只需采 用阻抗串、并联的方法即可将电路化简,求出其等效总阻抗。最后计算短路电流和短路容量。短路电流计算的方法,常用的有欧姆法(有称有名单位制法)和标幺制法(又称相对单位制法) 。本厂的供电系统简图如图(4-2)所示。采用两路电源供线,一路为距本厂6km的馈电变电站经LGJ-185架空线(系统按电源计),该干线首段所装高压断路器的断流容量为;一路为邻厂高压联络线。下面计算本厂变电所高压10kV母线上k-1点短路和低压380V母线上k-2点短路的三相短路电流和短路容量。图(4-2)下面采用标么制法进行短路电流计算。4.2.1 确定基准值:取,所以: 4.2.2 计算短路电路中各主要元件的电抗标么值:(忽略架空线至变电所的电缆电抗)1) 电力系统的电抗标么值: 2) 架空线路的电抗标么值:查手册得,因此: 3)电力变压器的电抗标么值:由所选的变压器的技术参数得,因此: 可绘得短路等效电路图如图(4-3)所示。图(4-3)4.2.3 计算k-1点的短路电路总电抗标么值及三相短路电流和短路容量1) 总电抗标么值:2) 三相短路电流周期分量有效值: 3) 其他三相短路电流: 4) 三相短路容量:4.2.4 计算k-2点短路电路总电抗标么值及三相短路电流和短路容量1) 总电抗标么值:2) 三相短路电流周期分量有效值:3) 其他三相短路电流: 4) 三相短路容量:4.3 本设计采用标幺制法进行短路计算4.3.1 在最小运行方式下: (1)确定基准值 取 Sd = 100MV·A,UC1 = 60KV,UC2 = 10.5KV而Id1 = Sd /3UC1 = 100MV·A/(3×60KV) = 0.96KA Id2 = Sd /3UC2 = 100MV·A/(3×10.5KV) = 505KA (2)计算短路电路中各主要元件的电抗标幺值 1.电力系统(SOC = 310MV·A)X1* = 100KVA/310= 0.32 2.架空线路(XO = 0.4/km)X2* = 0.4×4×100/ 10.52= 1.52 3.电力变压器(UK% = 7.5) X3* =UK%Sd/100SN 7.5×100×103/(100×5700) = 1.32 绘制等效电路如图,图上标出各元件的序号和电抗标幺值,并标出短路计算点。(3)求 k-1点的短路电路总电抗标幺值及三相短路电流和短路容量a ·总电抗标幺值 X*(K-1)= X1*X2*= 0.32+1.52= 1.84 b.三相短路电流周期分量有效值 IK-1(3) = Id1/X*(K-1)= 0.96/1.84 =0.52 c.其他三相短路电流 I"(3) = I(3) = Ik-1 (3) = 0.52KA ish(3) = 2.55×0.52KA = 1.33KA Ish(3) = 1.51×0.52 KA= 0.79KA (4)三相短路容量 Sk-1(3) = Sd/X*(k-1) =100MVA/1.84=54.3 4.3.2 在最大运行方式下(1)确定基准值取Sd = 1000MV·A,UC1 =60KV,UC2 = 10.5KV而Id1 = Sd /3UC1 = 1000MV·A/(3×60KV) =9.6 Id2 = Sd /3UC2 = 1000MV·A/(3×10.5KV) = 55KA (2)计算短路电路中各主要元件的电抗标幺值 1)电力系统(SOC = 1338MV·A)X1*= 1000/1338= 0.75 2)架空线路(XO = 0.4/km) X2* = 0.4×4×1000/602 =0.45 3)电力变压器(UK% = 4.5)X3* = X4* = UK%Sd/100SN = 7.5×1000×103/(100×5700) = 13.2(3)求 k-1 点的短路电路总电抗标幺值及三相短路电流和短路容量 总电抗标幺值 X*(K-1) = X1*X2* = 0.75+0.45= 1.2 三相短路电流周期分量有效值 IK-1(3) = Id1/ X*(K-1)= 9.6KA/1.2 = 8KA 其他三相短路电流 I"(3) = I(3) = Ik-1(3) = 8KA ish(3) = 2.55×8KA = 20.4KA Ish(3) = 1.51×X*(K-1)8KA = 12.1KA 三相短路容量 Sk-1(3) = Sd/X*(k-1)= 1000/1.2 = 833MVA(4)求 k-2 点的短路电路总电抗标幺值及三相短路电流和短路容量 1)总电抗标幺值 X*(K-2) = X1*X2*X3*X4* = 0.750.4513.2/2 = 7.8 2)三相短路电流周期分量有效值 IK-2(3) = Id2/X*(K-2) = 55KA/7.8 = 7.05KA 3)其他三相短路电流 I"(3) = I(3) = Ik-2(3)= 7.05KA ish(3) = 2.55×7.05KA =17.98KA Ish(3) = 1.51×7.05KA = 10.65KA 4)三相短路容量 Sk-2(3) = Sd/X*(k-2) = 1000/7.05= 141.8MV·A第5章 变电所一次设备的选择及校验5.1 10kV侧一次设备的选择校验5.1.1按工作电压选则 设备的额定电压一般不应小于所在系统的额定电压,即,高压设备的额定电压应不小于其所在系统的最高电压,即。=10kV, =11.5kV,高压开关设备、互感器及支柱绝缘额定电压=12kV,穿墙套管额定电压=11.5kV,熔断器额定电压=12kV。5.1.2按工作电流选择设备的额定电流不应小于所在电路的计算电流,即5.1.3按断流能力选择 设备的额定开断电流或断流容量,对分断短路电流的设备来说,不应小于它可能分断的最大短路有效值或短路容量,即或 对于分断负荷设备电流的设备来说,则为,为最大负荷电流。5.1.4 隔离开关、负荷开关和断路器的短路稳定度校验a)动稳定校验条件或、分别为开关的极限通过电流峰值和有效值,、分别为开关所处的三相短路冲击电流瞬时值和有效值b)热稳定校验条件 对于上面的分析,如表5-1所示,由它可知所选一次设备均满足要求。表5-1 10 kV一次侧设备的选择校验选择校验项目电压电流断流能力动态定度热稳定度其它装置地点条件参数数据10kV57.7A()1.96kA5.0kA一次设备型号规格额定参数高压少油断路器SN10-10I/63010kV630kA16kA40 kA高压隔离开关-10/20010kV200A-25.5 kA二次负荷0.6高压熔断器RN2-1010kV0.5A50 kA-电压互感器JDJ-1010/0.1kV-电压互感器JDZJ-10-电流互感器LQJ-1010kV100/5A-=31.8 kA=81避雷针FS4-1010kV-户外隔离开关GW4-12/40012kV400A-25kA根据高压一次设备的选择校验项目和条件,在据电压、电流、流能力选择设备的基础上,对所选的高压侧设备进行必需的动稳定校验和热稳定度校验。a.设备的动稳定校验高压电器动稳定度校验校验条件: 由以上短路电流计算得= ;= 。并查找所选设备的数据资料比较得:高压断路器ZN24-10/1250/20 =50kA ,满足条件;电流互感器LZZQB6-10-0.5-200/5 =79kA,满足条件;JN-3-10/25接地开关=63 kA ,满足条件。绝缘子动稳定度校验校验条件: 母线采用平放在绝缘子上的方式,则:(其中=200mm;=900mm)。所以:= 满足要求。 母线的动稳定校验校验条件: TMY母线材料的最大允许应力=140MPa。10kV母线的短路电流=;= 三相短路时所受的最大电动力: =母线的弯曲力矩: 母线的截面系数: 母线在三相短路时的计算应力: 可得,=140MPa=,满足动稳定性要求。b.高压设备的热稳定性校验高压电器热稳定性校验校验条件: 查阅产品资料:高压断路器:=31.5kA,t=4s;电流互感器:=44.5kA ,t=1s;接地开关:=25kA,t=4s。取,=,将数据代入上式,经计算以上电器均满足热稳定性要求。高压母线热稳定性校验校验条件: A=查产品资料,得铜母线的C=171,取。母线的截面: A=504=200允许的最小截面: 从而,该母线满足热稳定性要求 。 c. 高压电缆的热稳定性校验校验条件: A=允许的最小截面: 所选电缆YJV-350的截面 A=50从而,该电缆满足热稳定性要求 。 5.2 380V侧一次设备的选择校验同样,做出380V侧一次设备的选择校验,如表5-2所示,所选数据均满足要求。 表5-2 380V一次侧设备的选择校验选择校验项目电压电流断流能力动态定度热稳定度其它装置地点条件参数-数据380V总1317.6A19.7kA36.2kA-一次设备型号规格额定参数-低压断路器DW15-1500/3D380V1500A40kA-低压断路器DW20-630380V630A(大于)30Ka(一般)-低压断路器DW20-200380V200A(大于)25 kA-低压断路HD13-1500/30380V1500A-电流互感器LMZJ1-0

    注意事项

    本文(工厂供电毕业设计1.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开