欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文.doc

    • 资源ID:3935706       资源大小:294.50KB        全文页数:7页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文.doc

    关于矩阵逆的判定及求逆矩阵方法的探讨摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出判定矩阵是否可逆及求逆矩阵的几种方法。关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。定义1 n级方阵A称为可逆的,如果n级方阵B,使得 AB=BA=E (1) 这里E是n级单位矩阵。定义2 如果B适合(1),那么B就称为A的逆矩阵,记作。定理1 如果A有逆矩阵,则逆矩阵是唯一的。逆矩阵的基本性质:性质1 当A为可逆阵,则.性质2 若A为可逆阵,则为任意一个非零的数都是可逆阵,且 .性质3 ,其中A,B均为n阶可逆阵.性质4 .由性质3有定理2 若是同阶可逆阵,则是可逆阵,且下面给出几种判定方阵的可逆性及求逆矩阵的方法:方法一 定义法 利用定义1,即找一个矩阵B,使AB=E,则A可逆,并且。方法二 伴随矩阵法 定义3 设是n级方阵,用表示A的元的代数余子式,矩阵称为A的伴随矩阵,记作A*。定理3 矩阵A可逆的充分必要条件是,并且当A可逆时,有。定理证明见1.定理3不仅给出了判断一个矩阵是否可逆的一种方法,并且给出了求逆矩阵的一种方法,但是这种方法主要用在理论上以及2级或3级矩阵的情形,如果阶数较大,那么使用此方法计算量太大。由定理3逆矩阵判定的方法还有:推论3.1 n级矩阵A可逆的充要条件是矩阵A的秩为n。推论3.2 矩阵A可逆的充要条件是它的特征值都不为0。推论3.3 n级矩阵A可逆的充分必要条件是它的行或列向量组线性无关。方法三 初等变换法 定义4 对矩阵施行以下三种变换称为矩阵的初等变换: 交换矩阵的两行列;以一个非零的数乘矩阵的某一行列; 把矩阵的某一行(列的倍加到另一行列。 定理4 方阵A可逆的充分必要条件是A可表示为若干个同阶初等矩阵的乘积。 具体方法是:欲求A的逆矩阵时,首先由A作出一个矩阵,即,其次对这个矩阵施以行初等变换且只能用行初等变换,将它的左半部的矩阵A化为单位矩阵,那么原来右半部的单位矩阵就同时化为:或者例1 求矩阵A的逆矩阵,已知。解: 注:在事先不知道n阶矩阵是可逆的情况下,也可直接用此方法。如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A不可逆。方法四 利用解线性方程组来求逆矩阵 若阶矩阵A可逆,则,于是的第列是线性方程组的解,.因此我们可以去解线性方程组,其,把所得的解的公式中的分别用;代替,便可求得的第列,这种方法在某些时候可能比用初等变换法求逆矩阵稍微简单一点。例2 求矩阵A=的逆矩阵。解: 设 解方程组AX=B即 解得然后把列,分别用 代入得到矩阵的第行,分别用 即这种方法特别适用于线性方程组AX=B的解容易求解的情形。方法五 分块求逆法 当一个可逆矩阵的阶数较大时,即使用初等变换求它的逆矩阵仍然计算量较大。如果把该矩阵分块,再对分块矩阵求逆矩阵,则能减少计算量。而且形如 的分块矩阵,使用分块矩阵较方便。现用为例,来说明求逆矩阵的方法,其它的矩阵可依此类推。 设有n阶可逆矩阵,其中为阶可逆方阵,求。解:设,则与有相同分法,则 得一个线性方程组为由于可逆,故存在,解得从而方法六 利用哈密尔顿凯莱定理求逆矩阵法 哈密尔顿凯莱定理 设A是数域P上一个矩阵,是A的特征多项式,则。如果A可逆,则A的特征多项式的常数项,由定理知. 于是 因此得 此式给出了的多项式计算方法。例3 已知,求。解:矩阵A的特征多项式为: 因,所以矩阵A可逆,由式知 =方法七 “和化积”法有时遇到这样的问题:要求判断方阵之和A+B的可逆性并求逆矩阵,此时可将A+B直接化为,由此有A+B可逆,且,或将方阵之和A+B表为若干个已知的可逆阵之积,再有定理2知A+B可逆,并可得出其逆矩阵。例4 证明:若,则是可逆阵,并求。证明: E-A是可逆矩阵且总之,矩阵可逆性的判断及求逆矩阵的方法很多,不仅仅只是以上列举的几种方法,大家在做题过程中,可根据题目的需要灵活选用方法来求解。参考文献:1丘维声. 高等代数M. 高等教育出版社,1985.2北京大学数学系. 高等代数M. 高等教育出版社,1988.3杨明顺. 三角矩阵求逆的一种方法. 渭南师范学院学报,2003.4杨彗. 矩阵的非奇异性判定及求逆矩阵的几种方法. 云南师范大学学报,2002. The ones that go against matrix judge and ask the discussion going against the matrix methodABSTRACT: Judging reversibly and against the asking and solving one of the main contents that is higher algebra of matrix. This text provides and judges whether matrix is reversible and asks several kinds of methods to go against matrix.KEYWORDS: Inverse matrix Adjoint matrix Elementary matrix Partitioned matrix

    注意事项

    本文(关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开