欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    LED点阵电子显示屏的应用设计论文.doc

    • 资源ID:3931880       资源大小:2.20MB        全文页数:41页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    LED点阵电子显示屏的应用设计论文.doc

    信息科学与技术学院毕业设计论文课题名称:LED点阵电子显示屏的应用设计学生姓名:学 号:学 院:信息科学与技术学院专业年级:电子信息工程指导教师:职 称:完成日期:LED点阵电子显示屏的应用设计摘 要 本设计使用STC89C52系列单片机作为主控制模块,利用简单的外围电路来驱动32×16的点阵LED显示屏。利用STC89C52系列单片机本身强大的功能和内部ROM,可以很方便的实现单片机的数据传输及存储,并能使显示内容的多样化,另一方面点阵显示屏广泛的应用于医院、机场、银行等公共场所,所以本设计具有很强的现实应用性。本LED显示屏能够以动态扫描的方式同时显示六个16×16点阵汉字,并能通过串口下载更新显示内容,通过控制单片机相应按钮控制点阵的显示效果等。本文从LED的显示原理入手,详细阐述了LED动态显示的过程,以及硬件电路的设计、计算和软件的算法。关键词 LED点阵 单片机 动态显示 电路设计The application of LED dot matrix electronic display designStudents:Yang Ao Yuan YuanTeacher:Sun Xiao QiAbstract: This design USES STC89C52 series microcontroller as the main control module, use simple peripheral circuit to drive 32 x 16 lattice LED display. Use STC89C52 series microcontroller itself powerful functions and internal ROM can easily achieve MCU data transmission and storage, and can make showing the contents of the diversification, on the other hand dot matrix display widely used in hospitals, airports, Banks and other public places, so this design has a strong practical application.Key words: LED dot matrix microcontroller Dynamic display Circuit design目录Teacher:Sun Xiao Qi2前言311 LED电子显示屏概述312 LED电子显示屏的分类413 LED显示屏的应用示例5附 录37前言11 LED电子显示屏概述LED电子显示屏(Light Emitting Diode Panel)是由几百-几十万个半导体发光二极管构成的像素点,按矩阵均匀排列组成。利用不同的半导体材料可以制造不同色彩的LED像素点。目前应用最广的是红色、绿色、黄色。而蓝色和纯绿色LED的开发已经达到了实用阶段。 LED显示屏是一种通过控制半导体发光二极管的亮度的方式,来显示文字、图形、图像、动画、行情、视频、录像信号等各种信息的显示屏幕。 LED显示屏分为图文显示屏和条幅显示屏,均由LED矩阵块组成。图文显示屏可与计算机同步显示汉字、英文文本和图形;而条幅显示屏则适用于小容量的字符信息显示。LED显示屏因为其像素单元是主动发光的,具有亮度高,视角广、工作电压低、功耗小、寿命长、耐冲击和性能稳定等优点。因而被广泛应用于车站、码头、机场、商场、医院、宾馆、银行、证券市场、建筑市场、拍卖行、工业企业管理和其它公共场所。 LED显示屏的发展前景极为广阔,目前正朝着更高亮度、更高气候耐受性、更高的发光密度、更高的发光均匀性,可靠性、全色化方向发展。 12 LED电子显示屏的分类按颜色分类单基色显示屏:单一颜色(红色或绿色)。 双基色显示屏:红和绿双基色,256级灰度、可以显示65536种颜色。全彩色显示屏:红、绿、蓝三基色,256级灰度的全彩色显示屏可以显示一千六百多万种颜色。 按显示器件分类LED数码显示屏:显示器件为7段码数码管,适于制作时钟屏、利率屏等,显示数字的电子显示屏。 LED点阵图文显示屏:显示器件是由许多均匀排列的发光二极管组成的点阵显示模块,适于播放文字、图像信息。 按使用场合分类室内显示屏:发光点较小,一般3mm-8mm,显示面积一般零点几至十几平方米。室外显示屏:面积一般几十平方米至几百平方米,亮度高,可在阳光下工作,具有防风、防雨、防水功能。 按发光点直径分类室内屏:3mm、3.75mm、5mm 室外屏:10mm、12mm、16mm、19mm、21mm、26mm 室外屏发光的基本单元为发光筒,发光筒的原理是将一组红、绿、蓝发光二极管封在一个塑料筒内共同发光增强亮度。13 LED显示屏的应用示例 见图1.1 左:图文屏 右:条幅屏 图1.1 LED电子显示屏应用示例其中的LED点阵单色图文动态条幅屏(下文中简称条屏),因为成本低廉、可靠性高、显示效果优良,所以成为点阵式LED汉字广告屏中的主流产品。14 设计任务本设计的任务就是完成一个可以随意扩展显示单元数目的单色动态条幅屏。任务要求:(1) 通过按键实现了汉字、字母和时间之间的切换16×32(或16×64)点阵LED显示;(2) 能显示特定汉字和字符;(3) 按键控制切换数字和字母;(4) 能实现滚屏显示、实时时间显示功能;(5) 可与PC机通信更新显示内容;第2章 显示原理及控制方式分析21 LED点阵模块结构八十年代以来出现了组合型LED点阵显示器模块,以发光二极管为像素,它用高亮度发光二极管芯阵列组合后,环氧树脂和塑模封装而成。这种一体化封装的点阵LED模块,具有高亮度、引脚少、视角大、寿命长、耐湿、耐冷热、耐腐蚀等特点。LED点阵规模常见的有4×4、4×8、5×7、5×8、8×8、16×16等等。根据像素颜色的数目可分为单色、双基色、三基色等。像素颜色不同,所显示的文字、图象等内容的颜色也不同。单色点阵只能显示固定色彩如红、绿、黄等单色,双基色和三基色点阵显示内容的颜色由像素内不同颜色发光二极管点亮组合方式决定,如红绿都亮时可显示黄色,如果按照脉冲方式控制二极管的点亮时间,则可实现256或更高级灰度显示,即可实现真彩色显示。图2.1示出最常见的8×8单色LED点阵显示器的内部电路结构和外型规格,其它型号点阵的结构与引脚可试验获得。 图2.1 8×8单色LED模块内部电路LED点阵显示器单块使用时,既可代替数码管显示数字,也可显示各种中西文字及符号如5x7点阵显示器用于显示西文字母5×8点阵显示器用于显示中西文,8x8点阵可以用于显示简单的中文文字,也可用于简单图形显示。用多块点阵显示器组合则可构成大屏幕显示器,但这类实用装置常通过PC机或单片机控制驱动。22 LED 动态显示原理 LED点阵显示系统中各模块的显示方式: 有静态和动态显示两种。静态显示原理简单、控制方便,但硬件接线复杂,在实际应用中一般采用动态显示方式,动态显示采用扫描的方式工作,由峰值较大的窄脉冲电压驱动,从上到下逐次不断地对显示屏的各行进行选通,同时又向各列送出表示图形或文字信息的列数据信号,反复循环以上操作,就可显示各种图形或文字信息。点阵式LED汉字广告屏绝大部分是采用动态扫描显示方式,这种显示方式巧妙地利用了人眼的视觉暂留特性。将连续的几帧画面高速的循环显示,只要帧速率高于24帧/秒,人眼看起来就是一个完整的,相对静止的画面。最典型的例子就是电影放映机。在电子领域中,因为这种动态扫描显示方式极大的缩减了发光单元的信号线数量,因此在LED显示技术中被广泛使用。以8×8点阵模块为例,说明一下其使用方法及控制过程。图2.1中,红色水平线Y0、Y1Y7叫做行线,接内部发光二极管的阳极,每一行8个LED的阳极都接在本行的行线上。相邻两行线间绝缘。同样,蓝色竖直线X0、X1X7叫做列线,接内部每列8个LED的阴极,相邻两列线间绝缘。在这种形式的LED点阵模块中,若在某行线上施加高电平(用“1”表示),在某列线上施加低电平(用“0”表示)。则行线和列线的交叉点处的LED就会有电流流过而发光。比如,Y7为1,X0为0,则右下角的LED点亮。再如Y0为1,X0到X7均为0,则最上面一行8个LED全点亮。现描述一下用动态扫描显示的方式,显示字符“B”的过程。其过程如图2.2图2.2 用动态扫描显示字符“B”的过程假设X,Y为两个8位宽的字节型数据,X的每位对应LED模块的8根列线X7-X0,同样Y的每位对应LED模块的8根行线Y7-Y0。在这个示例中,Y叫行扫描线,行扫描线在每个时刻只有一根线为“1”即有效行选通电平,X叫列数据线,其内容就是点阵化的字模数据的体现。下面用伪代码描述动态显示的过程。(1)Y=0x01,X=0xFF,如图 2.2第一帧;(2)Y=0x02,X=0x87,如图 2.2第二帧;(3)Y=0x04,X=0xBB,如图 2.2第三帧;(4)Y=0x08,X=0xBB,如图 2.2第四帧;(5)Y=0x10,X=0x87,如图 2.2第五帧;(6)Y=0x20,X=0xBB,如图 2.2第六帧;(7)Y=0x40,X=0xBB,如图 2.2第七帧;(8)Y=0x80,X=0x87,如图 2.2第八帧;(9)跳到第(1)步循环。如果高速地进行(1)到(9)的循环,且两个步骤间的间隔时间小于1/24秒,由于视觉暂留。LED显示屏上将呈现出一个完整的“B”字符。这就是动态扫描的原理。只不过实际运用的时候,列线和行线通常不止8位,还要根据列线和行线的数量来决定是用行线或列线来做扫描线。例如0601条屏(每行6个汉字,共1行),行线有16根,列线有96根。如果用列线来做扫描线,则每列LED在每96次循环扫描中只可能亮一次,则其发光视觉平均亮度为直流亮度的1/96。如果用行线来做扫描线,则每16次循环,每行LED就能亮一次,其发光视觉平均亮度为直流情况下的1/16。可见,用行线做扫描线,因为其发光周期的占空比较大,其视觉亮度是用列线做扫描线的6倍。因而发光效率比前者高。在实际运用的时候,还要在每两帧之间加上合适的延时,以使人眼能清晰的看见发光。在帧切换的时候还要加入余辉消除处理。比如先将扫描线全部设置为无效电平,送下一行的列数据后再选通扫描线,避免出现尾影。23 LED常见的控制方式目前常见的是并行传输方式,通过8位锁存器将8位总线上的列数据进行锁存显示,各8位锁存器的片选信号由译码器提供。此种方式的优点是传输速度快,对微控制器(MCU)的通信速度要求较低。但是这种方案最大的缺点是不便于随意扩展显示单元的数目。每增加一个16×16点阵的全角汉字显示单元,就需要在之前的电路上多增加两根地址线,这就要求在PCB布线的时候要留有充足的地址线冗余量。再一个缺点是,每个单元的PCB随着安放位置的不同,布线结构也不相同,不利于厂家批量生产。并行传输需要的芯片较多,因此市场上已经出现用FPGA,CPLD等高密度可编程逻辑器件(PLD)来取代传统锁存器IC的方案。成本有所下降,但可扩展性仍旧较差。因此,并行传输方式适用于显示单元数目确定的条屏。随着广告屏显示内容的多媒体化,对控制器传输速度,运算能力的要求越来越高。因此控制器的种类也在不断发展以适应要求,从最初的8051单片机,到PIC单片机,又到FPGA,直到现在的ARM处理器。不同功能档次的广告屏对应着不同的处理器。一以传统8051单片机为控制器的LED显示屏。因受到单片机运算速度及通信速率的限制,LED动态显示的刷新率不可能做得太高。对显示效果和移动算法的处理也比较吃力,在实际显示效果上有比较明显的闪烁感。除此之外,传统8051单片机的内部资源贫乏,仅128字节的数据存储器,几K字节的程序存储器,无E2PROM,SPI。这就需要对单片机扩展外设,无疑增加了硬件成本。因此,8051控制的条屏只能用于显示内容及其简单,不需要经常更改显示内容的场合。二以PIC单片机为控制器的LED显示屏。因PIC单片机是RISC架构的工业专用单片机,处理指令的速度有所增加,抗干扰能力优秀,型号种类繁多。作为条屏的控制器,可以明显的改善显示效果,同时PIC单片机内部的资源较丰富,可节省外部电路设计难度,同时降低了硬件成本。因此,以PIC单片机为控制器的条屏目前仍是单色条屏市场的主流。三以FPGA(复杂可编程逻辑门阵列)为控制器的LED显示屏。FPGA以高速、并行著称。是近年来新兴的可编程逻辑器件。用他作为LED显示屏的控制器,能够高速的处理色阶PWM信号、高速的完成动态扫描逻辑、高速的完成字符移动算法。因此被运用于双基色、三基色的显示系统。但是其成本较高,开发难度较大。四以ARM(32位RISC架构高性能微处理器)为控制器的LED显示屏。ARM有着极高的指令效率,极高的时钟频率。因此其运算能力非常强大,内部资源也十分丰富,极大的简化了硬件设计的难度,缩短了开发周期。在条屏的运用中,能用ARM来实现花样繁多的显示方式,以及高色阶,多像素的全彩屏驱动。ARM与FPGA的组合更是功能强大,除了海量存储技术,无线更新技术外,还能实时地显示视频信号。因此,以ARM为控制器的显示屏常为视频全彩屏。第3章 总体方案设计与分析31 显示单元的考虑显示一个简体汉字,至少需要16×16点阵来描述。为了在较远距离处获得清晰的视觉效果,本设计采用4个8×8点阵,像素直径3mm的LED模块拼接成16×16点阵的LED阵列。这样每个16×16汉字能够获得6.4×6.4cm的显示尺寸,因此在10米处仍能清晰阅读。本设计要求整个屏幕能同时显示两个汉字,则至少需要用8个8×8的LED模块拼接成32×16的矩阵。3. 2 滚屏的实现字符的位置在屏幕上实现移动,即术语“滚屏”。可以用硬件实现,但无疑增加了额外的硬件成本及设计难度。因此本设计采用软件算法实现左滚屏、定格显示等常见滚屏方式。用单片机来完成滚屏算法,其最大的优点在于成本低廉,而且可维护性、可升级性大大增强。3. 3 关于可扩展性除了基本要求外,本设计还要实现显示单元数目的随意扩展。在传统的并行传输方式中,因受到列数据锁存器地址线数目的制约,不能随意的增添显示单元,且每个显示单元的电路结构不同,PCB结构也不同,完全不符合模块化设计的要求。因此摒弃了传统的并行传输方式,而采用独特的串行锁存技术,通过控制五根总线就能实现各显示单元之间的列数据锁存。不仅板间连接简单,更是降低了PCB布局及布线的难度。每个显示单元的PCB都是完全一样的,便于量产。34 微控制器的考虑因本设计采用软件来实现滚屏,且传输方式为串行方式。所以对微控制器单元的处理速度要求较高,可供选择的有ARM7和高速8位单片机。ARM的处理速度极快,但对于条屏的应用,ARM内部的资源浪费严重,且成本较高。因此选择高速8位单片机作为控制器,常见的高速8位单片机有AVR系列单片机,C8051F系列单片机,STC89C52系列单片机。这几种单片机的处理速度均能达到要求,但AVR系列单片机的极限时钟频率只能到16MHz,而C8051F系列SOC类似于ARM7,时钟速度可到100MHz,但会浪费其内部丰富的资源,而且价格昂贵,用在单色条屏的控制中颇感浪费。于是最佳选择为STC89C52系列单片机,其最高时钟能到24MHz,且有较丰富的接口及存储器资源,价格极其低廉,零售价仅为3.5元/片。大幅降低了产品成本。35 关于显示内容的更新目前常用的下载方式有串口下载、USB下载、无线下载等。考虑到本设计的上、下位机进行一次通信时的数据量不大(2KB以内),而且对通信的速度及可靠性要求并不严格。因此本设计采用PC机串口来作为下载接口,PC机串口为RS-232C标准,其特点是共模传输,因此通信电缆可以是成本低廉的普通双绞线,同轴屏蔽线等。PC机串口的驱动程序编写较为简单,不需要掌握复杂的通信协议。36 总体电路结构及工作原理361 硬件电路框图通过前面对各种方案的比较与分析,初步构建硬件系统框图如图3.1列扫描驱动电路列扫描驱动电路电 源 LED点阵LED点阵行扫描驱动电路PC机MAX232STC89C52中央微控制器时钟芯片图3.1 LED显示屏硬件框图在图3.1中,LED点阵为显示单元。每个显示单元由一个16×16点阵的LED模块和一个16位宽的移位锁存器(串行并行转换器)构成。所有显示单元的16根行线均连接到公共的行扫描驱动电路。而每个显示单元的列数据则由16位移位锁存器并行输出口提供。中央微处理器SCT89C52负责与所有外围设备的协调通信,以及各种算法的处理。MCU用通用I/O口来驱动行扫描驱动电路。用通用I/O口模拟同步串行接口以实现和列数据锁存器(移位锁存器)之间的单向通信。MCU通过内部集成的SPI接口和时钟芯片进行双向通信。PC机(上位机)的RS-232C电平经过转换后,通过UART接口与MCU进行通信。电源则为各个模块提供稳定的电压以及足够的电流。362 工作原理首先需要用PC机通过串口将编译好的HEX文件下载到单片机内,接通电源后,单片机将不断的对每个引脚进行扫描。LED点阵会显示一幅图片当作欢迎页面。遵循结构化的程序设计思路。把单片机的在显示模式的所有工作量分为以下三个任务: 一扫描显示任务:扫描显示任务负责把disbuf()中的数据依次发送到列驱动器74HC595,并按严格的时序高电平选通十六根行扫描线(L0L15),使每一列数据对应着一个行线状态。二移动处理任务:移动处理任务负责完成显示字符逐点阵向左移动的算法处理,这是最基本的显示效果。其它大部分显示效果如左移,全屏定格显示等都是以逐位左移为基础。对显示字符的移动,实质上是对显示缓冲区disbuf()内数据的移动。该算法是将disbuf()和send8bit()中的数据首尾相接地左移一位,并不断把send8bit()移入disbuf()。三字符更新任务:在单片机的xdata区开辟了32字节的字模数据缓存区send8bit()。该缓存区与disbuf()编址连续。当调用字符更新任务时,程序从ROM存储区指定位置读取相邻两字节的汉字数据。并返回连续32字节的全角汉字字模数据或16字节的ASCII半角字模数据。这些字模数据就存储在32字节的字模数据缓存区中。字模数据缓存区send8bit() 中的数据可通过调用移动处理任务而逐位转移至动态显示缓冲区disbuf()中。三个任务彼此独立,又相互联系。下面用实际的C51程序来说明一下如何实现简单的左移显示效果。void displaymove(uchar *lp,uchar c,uchar timer)/显示汉字内容的移动效果,LP指向要显示第一个字的首地址,C表示显示字的个数,timer是移动的速度idata unsigned char i=0,j=0,ia=0;idata unsigned int tmp=0,timerc=0;idata unsigned char tmp216;c*=2;/因一个汉字由32字节组成,而移位显示,要分开半个汉字16字节处理,因此将这里乘以2for(i=0;i<16;i+)tmp21=0;/将缓冲区清0,while(c)if(lp!=0)/当lp指向的地址为0时,直接用组缓冲0补上,效果是将当前显示的内容移出tmp=c%2;/取余,目的是为了判断处理汉字的前半部份还是后半部份for(i=0;i<16;i+)tmp2i=lpi*2+tmp;/取半个汉字点阵数据,16字节if(tmp)/当tmp为1时,表时一个字数组处理完成,将地址转到下一个字lp+=32;/-tmp=8;/变量再次利用while(tmp)/循环8次,是将下一个字的前半部份的字节数据移入显示缓冲ia=0;/做为点阵数组的元素for(i=0;i<16;i+)/移动是16行同时移,因此要处理16个字节for(j=0;j<3;j+)/一行32个点四字节,有三字节在显示缓冲中移动lhjia<<=1;/移当前显示缓冲的半行字节if(lhjia+1&0x80)/判断后半行字节的高位是否为1,是移入前半行字节低位,否则不处理lhjia+;ia+;lhjia<<=1;/一行32个点四字节,将最后一字节用下一个字补上if(tmp2i&0x80)/判断下一个要显示汉字的前半行字节的高位是否为1,是移入,否则不处理lhjia+;ia+;tmp2i<<=1;/下一个要显示汉字的半行字节向高位移一位,准备下一次取位tmp-;timerc=timer;/处理完16行,调用显示函数更新点阵while(timerc-)/循环做为处理的速度,即移动的速度display1();/-c-;/移完一半,进入下一半或下一个汉字,直到结束第4章 硬件电路设计41 显示单元电路设计为了提高点阵LED的视觉亮度,本设计用行线做扫描线,列线做数据线。每行的显示占空比为直流情况下的1/16。为了再进一步的提高视觉亮度,选用了红色LED点阵模块DM880311K。本设计显示单元以及行列驱动电路如图4.1图4.1 16×16LED点阵 显示单元以及行列驱动电路411 LED点阵模块的选择本设计采用8个8×8点阵的LED模块拼接成一个16×32的单色模块使用。这样能获得较大的显示单元尺寸和发光亮度。412 列驱动电路设计如图4.1下面虚线框内,本设计中,每个16×16点阵的列驱动电路由两个串联的8位移位锁存器74HC595构成。74HC595,是为Motorola的SPI总线开发的一款串并转换芯片。由于74HC595的输入输出电平兼容LSTTL,NMOS,CMOS电平,且具有较强的输出负载能力,而被广泛地运用于MCU(微控制器)、MPU(微处理器)的I/O口扩展。74HC595在5V供电的时候能够达到30MHz的时钟速度,每个并行输出端口均能承受20mA的灌电流和拉电流。这个特点保证了不用增加额外的扩流电路即可轻松的驱动LED。它输入端允许500nS的上升(下降)时间,对严重畸形的时钟脉冲仍能检测。这样就可以容纳较大的传输线对地电容,使本设计的抗干扰能力增强。74HC595并行输出端与LED模块列线之间通过20的电阻连接,这里电阻起到分压,去除红色LED的并联嵌位作用。使红绿两组LED均能正常发光。由于LED显示屏的工作电流时刻在变化,造成了系统电压的波动。这种电压波动有高频成分,也有低频成分。轻则对周围无线电环境造成电磁污染,重则使系统时钟紊乱,逻辑错误。为避免此,在每个74HC595的电源VCC和GND旁边都并联了两个电容,用于滤波和退耦。稳定系统电压,旁路掉电源中的高频脉动成份。消除自激,减小对外杂散电磁辐射,提高EMI电磁兼容性。74HC595的引脚及逻辑功能如图4.2 图4.2 74HC595管脚图 74HC595逻辑图 74HC595的管脚功能描述见表4.1:管脚号管脚名称管脚功能描述1QB锁存器输出,三态2QC锁存器输出,三态3QD锁存器输出,三态4QE锁存器输出,三态5QF锁存器输出,三态6QG锁存器输出,三态7QH锁存器输出,三态8GND电源地9SQH串行输出,用于级联。无三态输出功能10Reset低电平有效,当此管脚上出现低电平时,将复位内部的移位寄存器,但不影响8位锁存器的值11Shift Clk移位寄存器时钟输入,上升沿将把A脚上的数据移入内部寄存器12Latch Clk锁存时钟输入,上升沿将把内部移位寄存器的值锁存起来13Output Enable低电平有效,将锁存器的输出映射到输出并行口(QA-QH)上。当输入高电平时,高阻态,同时本芯片的串行输出无效14A串行数据输入,数据从这个管脚移进内部的8位串行移位寄存器15QA锁存器输出,三态16VCC电源正,2-6V DC表4.1 74HC595的管脚功能描述413 行驱动电路设计因为本设计要求的行驱动电流较大,目前尚无合适的集成电路来胜任。因此本设计的行驱动电路采用三极管扩流方式,如图4.3。图4.3 两种三极管扩流方式(共集,共射)共集驱动方式, 又称射极跟随器,当电源电压足够时,在负载上获得的电压始终等于基极对地电压Ub减去发射结压降Ube。硅管的Ube一般为0.7V左右,因此在5V供电系统中,在负载上最多能获得4.3V的电压,若Ic=1 A 则在三极管上的管耗为1A×0.7V=0.7W,管耗较大,需选用中功率的管子。还有一个重要的特点,共集电路的基极是用高电平驱动,而单片机在复位期间,所有I/O口都呈现高电平。这样的话,在开机上电复位的瞬间,在所有的行线上都会获得电压。而造成开机瞬间全屏显示或造成巨大的浪涌电流冲击,使电源电压跌落,单片机工作异常。而使用共射驱动方式的话,同样的电源电压下,负载端能获得4.7V的电压,Ic=1A时的管耗只有0.3W。因此可选用小功率器件。共射电路的基极驱动是用低电平,这就不会造成上述共集电路的浪涌电流影响。同时,大部分单片机的I/O是弱上拉输出,也即是单片机能承受较大的灌电流,而只能提供微弱的拉电流。因此,综合权衡利弊,本设计采用PNP管共射电路作为行扫描线驱动。现对行驱动电路各元件参数进行计算。414 行驱动电路元件参数计算假设条屏使用在极端情况下,每一行的所有LED全部点亮。每行共4点阵,每个点阵包含红色,绿色两个LED。因此每行共32个LED。普通LED的安全工作电流在520mA之间,为获得较高亮度,又要兼顾其工作寿命。本设计中,每只LED工作电流取15mA。如此可知,当一行全点亮的时候总电流: I=0.015Ax32=0.48A管 耗: Pc=IC×VCEsat(管饱和压降)=0.48A×0.3V=0.144W;STC89C52RC系列单片机的每个I/O口能独立承受20mA的灌电流,也即是能够给共射驱动电路基极提供20mA的偏置电流。根据上述集电极电流和基极电流的比值,可计算出行扫描驱动三极管的直流电流放大系数.直流电流放大系数: ;对于基极偏流电阻,则起到对基极20mA偏置电流限流作用:基极限流电阻:;根据上述计算,综合其成本、封装、散热等因素考虑。本设计最终采用三只C8550D 小功率PNP管并联成一只PNP中功率管使用。其主要参数见图4.4 。C8550D官方数据手册摘录.图4.4 C8550D官方数据手册摘录从C8550D的官方数据手册上可知:最大集电极电流: Ic=-1.5A;最大集电极耗散功率:Pc=1W; 直流电流放大系数: =160300;三管并联,其Ic可以扩展到4.5A,不变,Pc扩展到3W。本人所购买的50只同一批号的C8550D,经实测,均在150左右。因此三管并联无须增加射极均流电阻。根据确定基极电流Ib和基极限流电阻R分别为:基极电流: 则基极限流电阻:。42 单片机控制系统电路设计421 单片机的选型根据方案论证的结果,本设计采用STC89C系列的STC89C52RC作为主控芯片。STC单片机是深圳宏晶科技的IC产品。STC单片机完全兼容传统51内核,因此使用的编译器和指令代码都和传统51单片机相同。对于STC89C52RC,主要特性见表4.2:(摘录自STC单片机官方数据手册)STC单片机与8051单片机的性能比较高速:一个时钟/机器周期,增强型51内核,平均速度可达到1MIPS/MHz宽电压:5.53.8V宽温限:-4085高抗静电:ESD保护,轻松过4KV快速脉冲干扰(EFT测试)低功耗:有空闲模式(工作电流小于1.3mA),掉电模式(可由外部中断唤醒,工作电流小于0.1uA),正常模式(工作电流2.77mA)工作频率:可从0到48MHz,相当于传统8051主频0576MHz时钟:可选择外部晶体或内部RC振荡器STC 12C5412AD单片机的内部资源兼容MCS51指令系统8K字节片内Flash程序存储器,擦写次数2万次以上256x8bit内部RAM数据存储器可编程UART串行通道32个双向I/O口, 3个16位可编程定时/计数器中断2个串行中断, 2个外部中断源, 共6个中断源,2个读写中断口线低功耗空闲和掉电模式时钟频率0-24MHz3级加密位, 软件设置睡眠和唤醒功能表4.2 STC89C52系列单片机主要特性422 STC单片机在条屏运用中的优越性对于单色动态条幅屏的应用需要,STC89C52RC单片机有以下突出的优点:较高的处理速度和时钟频率,能轻松的实现条屏的各种移动算法。有UART串行口,能实现与字库芯片或PC机之间的数据交换。有内部ROM,可用于掉电存放条屏的各种设置参数、汉字内码等数据。 内部看门狗,使条屏可以工作在恶虐的电磁环境下。宽电压范围,条屏的负载端电压的波动不会影响其正常运行。丰富的I/O口,可以代替LED行扫描用的行选通译码器器,降低产品成本。小型封装,便于PCB的紧凑化设计。423 单片机系统电路设计根据本条屏的实际运用要求,参考STC单片机官方数据手册上的应用指南,设计单片机系统电路如图4.5所示。图4.5 单片机系统电路在图4.5中,有源晶振为单片机提供11.0295MHz,0-5V幅度的高精度时钟。根据STC单片机数据手册约定,外部有源时钟应从XTAL1、XTAL2脚输入,图中1uF的电解电容和10K的电阻构成微分电路,在系统上电的瞬间,为单片机RESET脚提供约2mS的高电平脉冲,使单片机上电后立即可靠复位。图中的100uF电解电容和两个0.1uF瓷片电容,为单片机的供电电源进行滤波和高频旁路,滤除MCU及有源晶振对电源系统造成的高频脉动成分,提高系统的稳定性,降低对外电磁辐射。旁路电容采用瓷片电容,其优点体积小,耐压高,价格低,频率高(有一种是高频电容)。43 时钟芯片与单片机的接口设计431 字库芯片选型DS1302是美国DALLAS公司推出的一种高性能、低功耗的实时时钟芯片,附加31字节静态RAM,采用SPI三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号和RAM数据。实时时钟可提供秒、分、时、日、星期、月和年,一个月小与31天时可以自动调整,且具有闰年补偿功能。工作电压宽达2.55.5V。采用双电源供电(主电源和备用电源),可设置备用电源充电方式,提供了对后背电源进行涓细电流充电的能力。DS1302的外部引脚分配如图4.6所示及内部结构如图4.7所示。DS1302用于数据记录,特别是对某些具有特殊意义的数据点的记录上,能实现数据与出现该数据的时间同时记录,因此广泛应用于测量系统中。图4.6 DS1302外部引脚图图4.7 DS1302内部引脚图各引脚的功能为: Vcc1:主电源;Vcc2:备份电源。当Vcc2>Vcc1+0.2V时,由Vcc2向DS1302供电,当Vcc2< Vcc1时,由Vcc1向DS1302供电。 SCLK:串行时钟,输入,控制数据的输入与输出; I/O:三线接口时的双向数据线; CE:输入信号,在读、写数据期间,必须为高。该引脚有两个功能:第一,CE开始控制字访问移位寄存器的控制逻辑;其次,CE提供结束单字节或多字节数据传输的方法。 DS1302有下列几组寄存器: DS1302有关日历、时间的寄存器共有12个,其中有7个寄存器(读时81h8Dh,写时80h8Ch),存放的数据格式为BCD码形式。432 DS1302的工作原理 DS1302工作时为了对任何数据传送进行初始化,需要将复位脚(RST)置为高电平且将8位地址和命令信息装入移位寄存器。数据在时钟(SCLK)的上升沿串行输入,前8位指定访问地址,命令字装入移位寄存器后,在之后的时钟周期,读操作时输出数据,写操作时输出数据。时钟脉冲的个数在单字节方式下为8+8(8位地址+8位数据),在多字节方式下为8加最多可达248的数据。寄存器名称7 6 5 4 3 2 1 0 1 RAM/A4 A3 A2A1 A0 RD/W 秒寄存器1000000分寄存器1000001小时寄存器1000010日寄存器1000011月寄存器1000100星期寄存器1000101年寄存器1000110写保护寄存器1000111慢充电寄存器1001000时钟突发寄存器1011111表1 DS1302内部寄存器列表GT21L32S4W1与外部的通信是通过SPI高速同步串行通信口。串行外围设备接口SPI(Serial Peripheral Interface)总线技术是Motorola公司推出的一种同步串行接口。Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。SPI总线是一种三线同步总线,因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。SPI 总线是三线同步接口,同步串行3线方式进行通

    注意事项

    本文(LED点阵电子显示屏的应用设计论文.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开