694523546毕业设计(论文)基于PLC全自动洗衣机控制系统.doc
-
资源ID:3930964
资源大小:1.17MB
全文页数:48页
- 资源格式: DOC
下载积分:8金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
694523546毕业设计(论文)基于PLC全自动洗衣机控制系统.doc
安徽机电职业技术学院毕 业 论 文基于PLC全自动洗衣机控制系统系 别 电气工程系 专 业 机电一体化技术 班 级 机电3082班 姓 名 学 号 2010 2011 学年第 1 学期摘 要本文介绍了采用可编程控制器(PLC)作为核心控制部件并利用计算机进行组态监控的全自动洗衣机控制系统。文章主要介绍了洗衣机的结构,对全自动洗衣机的控制系统进行了全面的理论分析,在此基础上提出了基于PLC的全自动洗衣机控制方案,并对方案进行了论证,根据洗衣机的工作原理,设计了流程及程序,对按钮、继电器、开关、变频器等其它一些输入/输出点进行控制,实现了洗衣机洗衣过程的自动化。由于洗涤、排水、脱水的时间均由PLC内计数器进行控制,所以只要改变计数器参数就可以改变时间。具有智能化程度高、安全可靠、方便、灵活等特点。关键词:PLC;全自动洗衣机;变频器;继电器目 录目 录I 第一章 序言11.1 选题的背景意义1 1.2 洗衣机的发展史1 1.3 自动控制的应用领域2 1.4 本次课题主要研究的内容3第二章 系统的总体设计4 2.1 洗衣机控制系统简介4 2.2 控制系统的组成4第三章 硬件的理论与设计.63.1 硬件设计6 3.2 可编程序控制器7 3.2.1可编程控制器的基本概念与基本结构 73.2.2 可编程控制器的基本特点8 3.2.3S7-200系列PLC8 3.2.4 PLC接线图93.2.5 开关量I/O模块的选择10 3.2.6可编程序控制器I/O分配表12 3.3 继电器143.3.1继电器简介143.3.2继电器组的应用及实现功能14 3.4 变频器的使用及参数设定15第四章 组态软件简介及程序设计.16 4.1组态软件简介164.2 T型图程序设计174.2.1程序流程图17 4.2.2梯形图重点程序段落分析18 4.3组态监控设计 204.3.1变量的定义20 4.3.2界面的设计21 4.3.3重点的几个参数设定 22 4.3.4组态界面对可编程序逻辑控制器的写入 24程序清单26致谢43参考文献44第一章 绪论本章阐述了毕业论文选题的背景意义、洗衣机的发展历史以及自动化控制在工业生产和生活中所体现的应用价值,包括目前的应用范围及发展的前景。1.1选题的背景意义洗衣机是人们日常生活中常见的一种家电,已经成为人们生活中不可缺少的家用电器。在工业生产中的应用也十分广泛,本课题在于工业用洗衣机的研究,工业洗衣机适用于洗涤棉、毛、化纤、丝绸等衣物织品。水磨洗涤机可用于服装厂水洗牛仔服及丝绸等衣物。工业用洗衣机适用于宾馆、饭店、医院、学校、工厂等领域,满足大容量的洗衣要求。但是传统的基于继电器的控制,已经不能满足人们对洗衣机的自动化程度的要求了。洗衣机需要更好地满足人们的需求,必须借助于自动化技术的发展。而随着PLC技术的发展,用PLC作为控制器,就能很好地满足全自动洗衣机对自动化的要求,并且控制方式灵活多样,控制模式可以根据不同场合的应用而有所不同。自动化技术的飞速发展使得洗衣机由初始的半自动式洗衣机发展到现在的全自动洗衣机,又正在向智能化洗衣机方向发展。工业洗衣机主要特点:(1)工业洗衣机采用卧室滚筒型,工业洗衣机的内外筒均采用优质不锈钢板精制而成,平整光亮,耐腐蚀,对织物的磨损小且无损伤,机器使用寿命长;(2) 工业洗衣机内筒门盖均装有不锈钢安全锁紧机构,外筒门盖上设有电器互锁装置,运转安全可靠;(3) 工业洗衣机采用三角胶带传动,振动小、运转平稳、经久耐用。(4)工业洗衣机专业用于服装厂,水洗厂,宾馆,酒店,医院,工矿企业等。1.2洗衣机的发展历史从古到今,洗衣服都是一项难于逃避的家务劳动,而在洗衣机出现以前,对于许多人而言,它并不像田园诗描绘的那样充满乐趣,手搓、棒击、冲刷、甩打这些不断重复的简单的体力劳动,留给人的感受常常是:辛苦劳累。 1874年,“手洗时代”受到了前所未有的挑战有人发明了木制手摇洗衣机。发明者是美国人比尔·布莱克斯。布莱克斯的洗衣机构造极为简单,是在木筒里装上6块叶片,用手柄和齿轮传动,使衣服在筒内翻转,从而达到“净衣”的目的。这套装置的问世,让那些为提高生活效率而冥思苦想的人士大受启发,洗衣机的改进过程开始大大加快。 1880年,美国又出现了蒸汽洗衣机,蒸汽动力开始取代人力。 之后,水力洗衣机、内燃机洗衣机也相继出现。到1911年,美国试制成功世界上第一台电动洗衣机。电动洗衣机的问世,标志着人类家务劳动自动化的开端。电动洗衣机几经完善,在1922年迎来一种崭新的洗衣方式“搅拌式”。搅拌式洗衣机由美国玛依塔格公司研制成功。这种洗衣机是在筒中心装上一个立轴,在立轴下端装有搅拌翼,电动机带动立轴,进行周期性的正反摆动,使衣物和水流不断翻滚,相互摩擦,以此涤荡污垢。搅拌式洗衣机结构科学合理,受到人们的普遍欢迎。不过10年之后,美国本德克斯航空公司宣布,他们研制成功第一台前装式滚筒洗衣机,洗涤、漂洗、脱水在同一个滚筒内完成。这意味着电动洗衣机的型式跃上一个新台阶,朝自动化又前进了一大步!直至今日,滚筒式洗衣机在欧美国家仍得到广泛应用。 随着工业化的加速,世界各国也加快了洗衣机研制的步伐。首先由英国研制并推出了一种喷流式洗衣机,它是靠筒体一侧的运转波轮产生的强烈涡流,使衣物和洗涤液一起在筒内不断翻滚,洗净衣物。1955年,在引进英国喷流式洗衣机的基础之上,日本研制出独具风格、并流行至今的波轮式洗衣机。至此,波轮式、滚筒式、搅拌式在洗衣机生产领域三分天下的局面初步形成。 20世纪60年代以后,洗衣机在一些发达国家的消费市场开始形成系列,家庭普及率迅速上升。此间洗衣机在日本的发展备受瞩目。60年代的日本出现了带干桶的双桶洗衣机,人们称之为“半自动型洗衣机”。70年代,生产出波轮式套桶全自动洗衣机。70年代后期,微电脑控制的全自动洗衣机横空出世,让人耳目一新。到80年代,“模糊控制”的应用使得洗衣机操作更简便,功能更完备,洗衣程序更随人意,外观造型更为时尚进入90年代,由于电机调速技术的提高,洗衣机实现了宽范围的转速变换与调节,诞生了许多新水流洗衣机。此后,随着电机驱动技术的发展与提高,日本生产出了电机直接驱动式洗衣机,省去了齿轮传动和变速机构,引发了洗衣机驱动方式的巨大革命。1.3 自动控制的应用领域现代社会要求制造业对市场需求做出迅速的反应,生产出小批量、多品种、多规格、低成本和高质量的产品,为了满足这一要求,生产设备和自动生产线的控制系统必须具有极高的可靠性和灵活性,可编程控制器简称PLC(Programmable Logic Controller)正是顺应这一要求出现的,它是以微处理器为基础的通用工业控制装置。PLC的应用面广、功能强大、使用方便,是当代工业自动化的主要设备之一。PLC已经广泛地应用在各种机械设备和生产过程的自动控制系统中,当然PLC 在其他领域也得到了迅速的发展。在发达的工业国家,PLC已经广泛的应用在所有的工业部门,随着其性能价格比的不断提高,应用范围不断扩大,在我国有越来越多的行业领域开始应用到PLC。PLC的应用领域主要有数字量逻辑控制、运动控制、闭环过程控制、数据处理、通信联网等几个方面。1.4 本文主要研究的内容本次毕业设计是利用西门子S7-200PLC对洗衣机进行全自动控制,掌握STEP7-Micro/KINGVIEW组态王的组态理论和组态方法,制作整个洗衣过程监控界面,对电动机及其他设备进行实时监控。在实现以上全部功能的前提下,再对监控界面的控制功能作进一步研究,监控界面的控制功能就是不在现场的情况下,对现场的设备进行控制。第二章 系统的总体设计本段落将介绍所设计的全自动洗衣机整体结构,给出控制系统和执行机构的框图,并附文字说。介绍流程、工作方式及工作特点。2.1洗衣机控制系统简介本次设计的全自动洗衣机是以工业使用为目的,在一些工业环境下,洗衣机的工作强度要比家用洗衣机大得多。要想在相对恶劣的条件下长时间连续工作,就需要洗衣机的控制系统更加稳定耐用,从而达到更好的经济收益。但是,对于控制系统来说,能达到如此的地步,就需要相当的技术标准。这样来说,成本就将大幅度提高。 作为工业用途的洗衣机,其过高的成本可以凭借其出色的性能所带来的经济效益来弥补。可编程序控制器是一种能够适应多种工业环境的控制装置,其稳定的性能受到广大工业生产者的好评。这种控制系统具有极高的可靠性和灵活性。应用面广、功能强大、使用方便,是当代工业自动化的主要设备之一。PLC已经广泛地应用在各种机械设备和生产过程的自动控制系统中,当然PLC 在其他领域也得到了迅速的发展。在性能价格比不断提高的同时,它所带来的成果越来越明显。综上,本次设计的工业用途洗衣机控制系统将由PLC可编程序控制器来作为主要组成部分。2.2控制系统的组成本次设计的控制系统主要是以可编程序逻辑控制器所输出的离散型指令为指令源。通过这些数字信号的输出以及其他控制电路的受控行为来指挥供电电路给电动机供电,实现了对模拟洗衣机的控制。控制电路的组成主要包括:可编程序控制器、继电器组和连接电路(变频器)。其中,继电器为主要执行模块,PLC所发出的数字指令控制继电器线圈,而继电器的开合直接控制电源电路,实现对电动机的控制。另外,变频器只是作为演示时增强效果的连接装置,在电路中控制洗涤时的电机转速,不作为必要装置。图2.1系统结构框图在图2.1中可以看出,对供电电路的控制是本次设计的最终目的,也就是说,继电器的开合为控制电路的主要动作。模拟洗衣机的电动机是满足工业380V三相电源的交流异步电动机,要想改变电动机的旋转方向只需调换其中的任意两相。这就是继电器组的主要功能。第三章 硬件的理论与设计本章将给出本次设计的洗衣机电路原理图和各个主要器件的具体介绍和说明。原理图中包括了供电回路图和控制回路图。元器件除PLC以外还包括了继电器组和变频器等。3.1硬件设计硬件设计的整体思路就是通过PLC输出的数字信号控制继电器组,达到控制电路的目的。如图3.1:图3.1图中“正转”、“反转”、“脱水”为控制电动机电源方向的三个继电器组,它们的线圈分别与PLC的输出端Q0.2、Q0.3、Q0.4相连,受控于PLC的输出信号。其中正转组和反转组是通过变频器的限制后接入电动机的,因此,改变变频器参数就可以改变洗涤和漂洗时的速度。而脱水继电器组直接与电源和电动机相连,这样,当洗衣机处于脱水状态时,电动机按额定转速工作。所以,在演示时转速会和洗涤漂洗有所区别。3.2可编程序控制器3.2.1可编程控制器的基本概念与基本结构随着微处理器、计算机和数字通讯技术的飞速发展,计算机控制已经扩展到了几乎所有的工业领域。 可编程控制器的基本概念国际电工委员会对PLC作了如下定义:可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式、模拟式的输入和输出,控制各种类型的机械或生产过程。可编程控制器及其有关设备,都应按以于使工业控制系统形成一个整体,易于扩充其功能的原则设计。 可编程控制器的基本结构CPU模块输入模块输出模块输出电源电源开关可编程控制器PLC主要由CPU模块、输入模块、输出模块和编程装置组成,如图所示:PLC的特殊功能模块用来完成某些特殊的任务。 图3.2可编程控制器的基本结构图 CPU模块CPU模块主要由微处理器(CPU芯片)和存储器组成。在PLC控制系统中,CPU模块相当于人的大脑和心脏,它不断地采集输入信号,执行用户程序,刷新系统的输出;存储器用来储存程序和数据。 I/O模块输入(Input)模块和输出(Output)模块简称I/O模块它们是联系系统外部设备和CPU模块的桥梁。 编程器编程器用来生成用户程序,并用它进行编辑、检查、修改和监控用户程序的执行情况。手持式编程器不能直接输入和编辑梯形图,只能输入和编辑指令表程序。一般用于小型机或用于现场调试和维护。使用编程软件可以在计算机上直接生成梯形图或指令表程序,并且可以实现不同编程语言之间的相互转换。程序被编译后通过PC/PPI电缆可以下载到PLC中去,也可以将PLC当中的程序上传到计算机当中来。 电源PLC一般使用AC 220V电源或DC 24V电源。内部的开关电源为各种模块提供不同电压等级的直流电源。3.2.2可编程控制器的基本特点可编程控制器具有编程方法简单易学、功能强大、性价比高、硬件配套齐全,用户使用方便、适应性强、可靠性强、抗干扰能力强、系统的设计、安装、调试工作量少、维护工作量小、维护方便、体积小、能耗低等特点。3.2.3 S7-200系列PLC西门子公司的SIMATIC S7-200系列属于小型PLC,可以用于代替继电器的简单控制场合,也可以用于复杂的自动化控制系统。由于它有极强的通信功能,在大型网络控制系统中也能充分发挥其作用。S7-200的可靠性非常高,可以用语句表、梯形图和功能块图编程。它的指令丰富,简单易学,内置有高速计数器、告诉脉冲输出和PID控制器等特殊功能,最大可以扩展到248点数字量I/O或35路模拟量I/O,最多有30多KB的程序和数据存储空间。S7-200提供了近10种通讯方式以满足不同的应用需求,从RS-485通信/编程接口通讯到自由口模式通讯,从PPI协议通讯到MPI协议通讯,从简单的S7-200之间的通讯到S7-200通过Profibus-DP网络通讯,甚至到S7-200通过以太网通讯。在网络需求已日益成为必要的今天,强大的通讯无疑会使S7-200为更多用户服务。3.2.4 PLC接线图图3.3 PLC接线图3.2.5开关量I/O模块的选择 开关量输入模块的选择开关量输入模块是用来接收现场输入设备的开关信号,将信号转换为PLC内部接受的低电压信号,并实现PLC内、外信号的电气隔离。开关量输入模块有直流输入、交流输入和交流直流输入三种类型。选择时主要根据现场输入信号和周围环境因素等。直流输入模块的延迟时间较短,还可以直接与接近开关、光电开关等电子输入设备连接;交流输入模块可靠性好,适合于有油雾、粉尘的恶劣环境下使用。 开关量输入模块的输入信号的电压等级有:直流5V、12V、24V、48V、60V等;交流110V、220V等。选择时主要根据现场输入设备与输入模块之间的距离来考虑。一般5V、12V、24V用于传输距离较近场合,如5V输入模块最远不得超过10米。距离较远的应选用输入电压等级较高的模块。开关量输入模块主要有汇点式和分组式两种接线方式,即汇点式和分组式。汇点式的开关量输入模块所有输入点共用一个公共端(COM);而分组式的开关量输入模块是将输入点分成若干组,每一组(几个输入点)有一个公共端,各组之间是分隔的。分组式的开关量输入模块价格较汇点式的高,如果输入信号之间不需要分隔,一般选用汇点式的。对于选用高密度的输入模块(如32点、48点等),应考虑该模块同时接通的点数一般不要超过输入点数的60。为了提高系统的可靠性,必须考虑输入门槛电平的大小。门槛电平越高,抗干扰能力越强,传输距离也越远,具体可参阅PLC说明书。 开关量输出模块的选择开关量输出模块是将PLC内部低电压信号转换成驱动外部输出设备的开关信号,并实现PLC内外信号的电气隔离。开关量输出模块有继电器输出、晶闸管输出和晶体管输出三种方式。继电器输出的价格便宜,既可以用于驱动交流负载,又可用于直流负载,而且适用的电压大小范围较宽、导通压降小,同时承受瞬时过电压和过电流的能力较强,但其属于有触点元件,动作速度较慢(驱动感性负载时,触点动作频率不得超过1HZ)、寿命较短、可靠性较差,只能适用于不频繁通断的场合。对于频繁通断的负载,应该选用晶闸管输出或晶体管输出,它们属于无触点元件。但晶闸管输出只能用于交流负载,而晶体管输出只能用于直流负载。开关量输出模块主要有分组式和分隔式两种接线方式。 分组式输出是几个输出点为一组,一组有一个公共端,各组之间是分隔的,可分别用于驱动不同电源的外部输出设备;分隔式输出是每一个输出点就有一个公共端,各输出点之间相互隔离。选择时主要根据PLC输出设备的电源类型和电压等级的多少而定。一般整体式PLC既有分组式输出,也有分隔式输出。开关量输出模块的输出电流(驱动能力)必须大于PLC外接输出设备的额定电流。用户应根据实际输出设备的电流大小来选择输出模块的输出电流。如果实际输出设备的电流较大,输出模块无法直接驱动,可增加中间放大环节。选择开关量输出模块时,还应考虑能同时接通的输出点数量。同时接通输出设备的累计电流值必须小于公共端所允许通过的电流值,如一个220V2A的8点输出模块,每个输出点可承受2A的电流,但输出公共端允许通过的电流并不是16A(8×2A),通常要比此值小得多。一般来讲,同时接通的点数不要超出同一公共端输出点数的60。开关量输出模块的技术指标,它与不同的负载类型密切相关,特别是输出的最大电流。另外,晶闸管的最大输出电流随环境温度升高会降低,在实际使用中也应注意。3.2.6 可编程序控制器I/O分配表表3.1I/O分配表符号地址1启动信号I0.02停止信号I0.13排水信号I0.24水位上限位信号I0.35水位下限位信号I0.46进水阀输出Q0.07排水阀输出Q0.18正转输出Q0.29反转输出Q0.310脱水输出Q0.411报警输出Q0.512显示编码A输出Q0.613显示编码B输出Q0.714显示编码C输出Q1.015显示编码D输出Q1.116M启动M1.017M停止M1.118M排水M1.219M水位上限位M1.320M水位下限位M1.421M进水M2.022M排水M2.123M正转M2.224M反转M2.325M脱水M2.426M报警M3.027洗涤标志位M4.028漂洗标志位M4.129脱水标志位M4.230报警标志位M4.331洗涤完成标志位M4.432漂洗完成标志位M4.533电机正转定时器T13734电机反转定时器T13835电机脱水定时器T13936报警定时器T14037洗涤计数器C038漂洗计数器1C139漂洗计数器2C23.3 继电器3.3.1 继电器简介继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。3.3.2 继电器组的应用及实现的功能在本次设计中,对继电器的使用较为突出,原理是利用可编程序控制器的24V直流信号来控制继电器线圈,实现由可控制的按预定程序导通/关断的380V三相电源给电动机供电。本次使用的继电器模块由三组三联装共九个继电器组成,每组继电器完成一个功能。可分为:正转控制组,反转控制组及脱水控制组。控制线圈与PLC的输出口相连,电动机高压电源通过变频器以后与继电器“常开引脚”相连,公共端接地。它们的开合直接由可编程序控制器输出的离散信号控制。即当洗衣机处在洗涤过程要求正转时,正转控制组闭和,反转及脱水控制组断开,三相电源按照原始顺序接入,电源由变频器控制频率后给电动机供电,此时电动机正转且速度为预定数值;当洗衣机处在洗涤过程要求反转时,反转控制组闭和,正转及脱水控制组断开,此时,三相电源中的两相已被继电器互换相接,由于三相异步电动机改变任意两相电磁力矩相反,电源再由变频器控制频率后给电动机供电,此时电动机反转且速度为预定数值;当洗衣机处在脱水过程要求高速正转时,脱水控制组闭和,正转及反转控制组断开,此时,三相电源按预定顺序接入,电源直接接入电动机,电动机按额定转速正转。3.4 变频器的使用及参数设定在本次设计中遇到需改变电机转速及正向反向交替旋转的问题,并且需要实现在洗衣机全自动的过程中洗涤和脱水的转速变化,这样就必须运用一定的措施来控制电源的出入从而使其显现出明显不同的观察效果。由于在整个过程中,变频器的作用仅为控制电机的转速,正反向旋转及高速脱水均由继电器实现,使得变频器的参数设定不必过于复杂,运用变频器出厂设置稍作调整,即可实现对外部端子的点动控制。表3.2 变频器参数设定序号变频器参数出厂值设定值功能说明1P0304230380电动机的额定电压( 380V )2P03053.250.35电动机的额定电流( 0.35A )3P03070.750.06电动机的额定功率( 60W )4P031050.0050.00电动机的额定频率( 50Hz )5P031101430电动机的额定转速( 1430 r/min )6P100021用操作面板(BOP)控制频率的升降7P108000电动机的最小频率( 0Hz )8P10825050.00电动机的最大频率( 50Hz )9P11201010斜坡上升时间( 10S )10P11211010斜坡下降时间( 10S )11P070022选择命令源( 由端子排输入 )12P0701110正向点动13P07021211反向点动14P10585.0020正向点动频率(30Hz)15P10595.0020反向点动频率(20Hz)16P106010.005点动斜坡上升时间(10S)17P106110.005点动斜坡下降时间(5S)第四章 组态软件及程序设计4.1 组态软件简介组态王开发监控系统软件是新型的工业自动控制系统正以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统,它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。尤其考虑三方面问题:画面、数据、动画。通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。而且,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。“组态王”软件存于一张光盘上。光盘上的安装程序Install.exe程序会自动运行,启动组态王按照安装过程向导进行安装即可。4.2 T型图程序设计4.2.1程序流程图图4.1 程序流程图4.2.2梯形图重点程序段落分析图5.2图4.2如图所示程序段落,vw416和vw412是从组态软件中定义的两个具有选择作用的寄存器,当其中任意一个为“1”时,就将预设的参数“5”“25”或“10”“50”写入洗涤计数器和电机正反转计时器中。通过这种选择就实现了在不重新下载程序的情况下一键式选择强洗弱洗功能。图4.3图4.4以上图两图为正转计时器和洗涤计数器,将由寄存器写入参数。图4.5图4.6在洗涤过程中,由T37和T38计算正反转时间,既当这两个计时器其中一个达到预定参数时,T37或T38启动,接通另一个旋转方向。也就是说另一方向输出置位,本旋转方向复位。当达到预定洗涤次数时,洗涤计数器导通,这样,洗涤完成标志位置位,排水阀置位,正转、放转及洗涤标志位复位。图4.7如上图所示为洗涤完成时,排水阀及进水阀的设置情况。当洗涤完成时,既正反转计数器达到设定值,洗涤完成标志位启动,只要是水位达到下限,M排水阀马上复位停止排水。又当判断水位没有达到上限时,M进水阀置位,开始进水。4.3 组态监控设计运用组态软件建立洗衣机监控系统亦为任务要求。采取上位机观察能更直观的显示出整个模拟自动控制过程,丰富了毕业设计内容,更会体现出对学生考核的全面性及综合性。4.3.1 变量的定义图4.8 变量的定义过程在利用组态软件的编辑过程中,首先应定义所要用到的变量,包括变量的描述,变量的类型,定义变量地址,选择连接的设备,寄存器。也有些是原系统内部已经定义好的变量,如时间和日期等等,可以直接放入界面使用,并且会访问到操作系统的时钟。在定义变量的过程中,应将从PLC中直接inputoutput的信号变量定义为离散型信号,如启动,正反转等。而在自动控制过程中调用从预先写入寄存器内的参数时,应将此类信号变量设置为整型变量,如强洗,弱洗,洗涤次数等等。4.3.2 界面的设计图4.9界面的设计本次设计的界面比较简陋,没有模仿洗衣机的造型或者有旋转效果,只是显示出水位的高低变化,和流水的动画。图中正/反转实为文本,会在监控自动控制过程中随PLC正/反转信号闪烁,平时定义为隐含。另外,图中按钮多数不能操控PLC,只是在点击之后闪烁,表明系统所处的工作状态。但是,其中强洗/弱洗确为真实选择按钮,在洗衣过程之前选择,会改变洗涤强度,实现多段选择。具体实现方法会在下节说明。4.3.3 重点的几个参数设定定义参数:图4.10洗衣机的水位参数选择变量参数:图4.11反应器参数10格每秒,共100格,底色为黄色,蓝色代表水。图4.12 多边线(水管)的参数设置管道水流动画设置为流动效果,由PLC离散信号控制,或给水或供排水。图4.13排水管的变量参数以排水管为例,设置管道变量参数。图4.14模拟演示上图并为与PLC相连,设置给水管道为离散变量,单独与水罐相连,进入演示画面,测试结果如上图所示,动画连接成功。4.3.4 组态界面对可编程序逻辑控制器的写入在本次设计任务中,在不对PLC重新下载程序的情况下完成对强/弱洗的自由切换。即需要在运行洗涤过程时完成强、弱洗的区分。可以从梯形图中的几个V寄存器中选择性提取已经设置好的两个不同周期不同次数的洗涤过程参数。从另一个角度来说,这个组态界面不仅仅是监控全自动洗衣过程的上位机,而且是能够通过V寄存器写入数据,实现与PLC相互通讯的目的,从而完成了任务目标。图4.15寄存器如图4.2所示,VW412和VW416即为选择强、弱洗得两个按钮,由它们控制的是寄存器VW432和VW436,通过储存不同的设定值用于后期的调用,来处理强弱洗选择问题。附录 程序清单致 谢随着毕业日子的将近,我的毕业论文也接近了尾声。经过几周的奋战我的论文终于完成了。在没有做毕业论文以前觉得课程设计只是对这几年来所学知识的单纯总结,但是通过这次做毕业论文发现自己的看法有点太片面。毕业设计设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次毕业论文使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次毕业论文,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。在这次毕业论文中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,不同的看法对我们更好的理解知识有很大帮助,所以在这里非常感谢帮助我的同学。一开始感觉开头非常困难,不知道如何入手,但做完时有种如释重负的感觉。此外,还得出一个结论:知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现不是闹着玩的,所以我认为只有到真正会用的时候才是真正懂了,要达到学以致用。在此要感谢我的指导老师赵光艺对我的悉心照顾,感谢他给我带来的帮助。在制作过程中,通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。不仅如此,在整个设计中我也懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不算太好,但是在设计过程中所学到的东西是这次课程设计中最大的收获和财富,使我终身受益。参考文献1 廖常初. 可编程序控制器应用技术(第四版). 重庆大学出版社, 20022 蒋金周. 全自动洗衣机的PC智能控制. 机电一体化3 吴存宏. 浅谈PLC在全自动洗衣机中运用. 家用电器科技,20004 谢克明、夏路易. 可编程控制器原理与程序设计. 电子工业出版社5 自动化网论坛. 全自动洗衣机PLC控制6 石秋洁 变频器应用基础. 机械工业出版社,20097 田淑珍 可编程控制器原理及应用. 机械工业出版社,20108 周元一 电机与电气控制. 机械工业出版社,2009