《多元统计分析》ppt课件-因子分析.ppt
1,因子分析,2,1 引言 因子分析(factor analysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子。例如,在企业形象或品牌形象的研究中,消费者可以通过一个有24个指标构成的评价体系,评价百货商场的24个方面的优劣。,3,但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品的价格。因子分析方法可以通过24个变量,找出反映商店环境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:,称 是不可观测的潜在因子。24个变量共享这三个因子,但是每个变量又有自己的个性,不被包含的部分,称为特殊因子。,4,注:因子分析与回归分析不同,因子分析中的因子是一个比较抽象的概念,而回归因子有非常明确的实际意义;主成分分析分析与因子分析也有不同,主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。,5,2 因子分析模型,一、数学模型,设 个变量,如果表示为,6,称为 公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。并且满足:,即不相关;,即 互不相关,方差为1。,7,即互不相关,方差不一定相等,。,8,用矩阵的表达方式,9,二、因子分析模型的性质,1、原始变量X的协方差矩阵的分解,D的主对角线上的元素值越小,则公共因子共享的成分越多。,10,2、模型不受计量单位的影响,将原始变量X做变换X*=CX,这里Cdiag(c1,c2,cn),ci0。,11,12,3、因子载荷不是惟一的,设T为一个pp的正交矩阵,令A*=AT,F*=TF,则模型可以表示为,且满足条件因子模型的条件,13,三、因子载荷矩阵中的几个统计特征,1、因子载荷aij的统计意义,因子载荷 是第i个变量与第j个公共因子的相关系数,模型为,在上式的左右两边乘以,再求数学期望,根据公共因子的模型性质,有,(载荷矩阵中第i行,第j列的元素)反映了第i个变量与第j个公共因子的相关重要性。绝对值越大,相关的密切程度越高。,14,2、变量共同度的统计意义,定义:变量 的共同度是因子载荷矩阵的第i行的元素的平方和。记为,统计意义:,两边求方差,所有的公共因子和特殊因子对变量 的贡献为1。如果 非常靠近1,非常小,则因子分析的效果好,从原变量空间到公共因子空间的转化性质好。,15,3、公共因子 方差贡献的统计意义,因子载荷矩阵中各列元素的平方和 称为某一公共因子 对诸变量所提供的方差贡献和。衡量的相对重要性。,16,3 因子载荷矩阵的估计方法,设随机向量 的均值为,协方差为,为的特征根,为对应的标准化特征向量,则,主成分分析法,17,上式给出的表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去后面的p-m项的贡献,有,18,上式有一个假定,模型中的特殊因子是不重要的,因而从的分解中忽略了特殊因子的方差。,19,例 假定某地固定资产投资率,通货膨胀率,失业率,相关系数矩阵为试用主成分分析法求因子分析模型。,20,特征根为:,21,可取前两个因子F1和F2为公共因子,第一公因子F1物价就业因子,对X的贡献为1.55。第一公因子F2为投资因子,对X的贡献为0.85。共同度分别为1,0.706,0.706。,22,4 因子旋转(正交变换),建立了因子分析数学目的不仅仅要找出公共因子以及对变量进行分组,更重要的要知道每个公共因子的意义,以便进行进一步的分析,如果每个公共因子的含义不清,则不便于进行实际背景的解释。由于因子载荷阵是不惟一的,所以应该对因子载荷阵进行旋转。目的是使因子载荷阵的结构简化,使载荷矩阵每列或行的元素平方值向0和1两极分化。有三种主要的正交旋转法。四次方最大法、方差最大法和等量最大法。,23,百米跑成绩 跳远成绩 铅球成绩 跳高成绩 400米跑成绩 百米跨栏 铁饼成绩 撑杆跳远成绩 标枪成绩 1500米跑成绩,奥运会十项全能运动项目得分数据的因子分析,24,25,因子载荷矩阵可以看出,除第一因子在所有的变量在公共因子上有较大的正载荷,可以称为一般运动因子。其他的3个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表,26,27,通过旋转,因子有了较为明确的含义。百米跑,400米跑,需要爆发力的项目在 有较大的载荷,可以称 为短跑速度因子;铅球,铁饼和 标枪在 上有较大的载荷,可以称为爆发性臂力因子;百米跨栏,撑杆跳远,跳远和为 跳高在 上有较大的载荷,爆发腿力因子;长跑耐力因子。,28,变换后因子的共同度,设正交矩阵,做正交变换,变换后因子的共同度没有发生变化!,(二)旋转方法,29,变换后因子贡献,设正交矩阵,做正交变换,变换后因子的贡献发生了变化!,30,1、方差最大法 方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上又较高的载荷时,对因子的解释最简单。方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于1,另一部分趋于0。,31,32,33,5 因子得分,(一)因子得分的概念,前面我们主要解决了用公共因子的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子做其他的研究,比如把得到的因子作为自变量来做回归分析,对样本进行分类或评价,这就需要我们对公共因子进行测度,即给出公共因子的值。,34,人均要素变量因子分析。对我国32个省市自治区的要素状况作因子分析。指标体系中有如下指标:X1:人口(万人)X2:面积(万平方公里)X3:GDP(亿元)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)X6:万人拥有的大学生数(人)X7:万人拥有科学家、工程师数(人),Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1-0.21522-0.27397 0.89092 X2 0.63973-0.28739-0.28755 X3-0.15791 0.06334 0.94855 X4 0.95898-0.01501-0.07556 X5 0.97224-0.06778-0.17535 X6-0.11416 0.98328-0.08300 X7-0.11041 0.97851-0.07246,35,X1=-0.21522F1-0.27397F2+0.89092F3 X2=0.63973F1-0.28739F2-0.28755F3 X3=-0.15791F1+0.06334F2+0.94855F3 X4=0.95898F1-0.01501F2-0.07556F3 X5=0.97224F1-0.06778F2-0.17535F3 X6=-0.11416F1+0.98328F2-0.08300F3 X7=-0.11041F1+0.97851F2-0.07246F3,36,Standardized Scoring Coefficients FACTOR1 FACTOR2 FACTOR3 X1 0.05764-0.06098 0.50391 X2 0.22724-0.09901-0.07713 X3 0.14635 0.12957 0.59715 X4 0.47920 0.11228 0.17062 X5 0.45583 0.07419 0.10129 X6 0.05416 0.48629 0.04099 X7 0.05790 0.48562 0.04822,F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7,37,前三个因子得分,38,因子分析的数学模型为:,原变量被表示为公共因子的线性组合,当载荷矩阵旋转之后,公共因子可以做出解释,通常的情况下,我们还想反过来把公共因子表示为原变量的线性组合。,因子得分函数:,可见,要求得每个因子的得分,必须求得分函数的系数,而由于pm,所以不能得到精确的得分,只能通过估计。,39,回归方法,1)思想,40,则,我们有如下的方程组:,41,j=1,2,m,42,注:共需要解m次才能解出 所有的得分函数的系数。,43,国民生活质量的因素分析 国家发展的最终目标,是为了全面提高全体国民的生活质量,满足广大国民日益增长的物质和文化的合理需求。在可持续发展消费的统一理念下,增加社会财富,创自更多的物质文明和精神文明,保持人类的健康延续和生生不息,在人类与自然协同进化的基础上,维系人类与自然的平衡,达到完整的代际公平和区际公平(即时间过程的最大合理性与空间分布的最大合理化)。从1990年开始,联合国开发计划署(UYNP)首次采用“人文发展系数”指标对于国民生活质量进行测度。人文发展系数利用三类内涵丰富的指标组合,即人的健康状况(使用出生时的人均预期寿命表达)、人的智力程度(使用组合的教育成就表达)、人的福利水平(使用人均国民收入或人均GDP表达),并且特别强调三类指标组合的整体表达内涵,去衡量一个国家或地区的社会发展总体状况以及国民生活质量的总水平。,44,在这个指标体系中有如下的指标:X1预期寿命X2成人识字率X3综合入学率X4人均GDP(美圆)X5预期寿命指数X6教育成就指数X7人均GDP指数,45,旋转后的因子结构 Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1 0.38129 0.41765 0.81714 X2 0.12166 0.84828 0.45981 X3 0.64803 0.61822 0.22398 X4 0.90410 0.20531 0.34100 X5 0.38854 0.43295 0.80848 X6 0.28207 0.85325 0.43289 X7 0.90091 0.20612 0.35052 FACTOR1为经济发展因子 FACTOR2为教育成就因子 FACTOR3为健康水平因子,46,被每个因子解释的方差和共同度 Variance explained by each factor FACTOR1 FACTOR2 FACTOR3 2.439700 2.276317 2.009490 Final Communality Estimates:Total=6.725507 X1 X2 X3 X4 X5 0.987530 0.945796 0.852306 0.975830 0.992050 X6 X7 0.994995 0.976999,47,生育率的影响因素分析,生育率受社会、经济、文化、计划生育政策等很多因素影响,但这些因素对生育率的影响并不是完全独立的,而是交织在一起,如果直接用选定的变量对生育率进行多元回归分析,最终结果往往只能保留两三个变量,其他变量的信息就损失了。因此,考虑用因子分析的方法,找出变量间的数据结构,在信息损失最少的情况下用新生成的因子对生育率进行分析。选择的变量有:多子率、综合节育率、初中以上文化程度比例、城镇人口比例、人均国民收入。下表是1990年中国30个省、自治区、直辖市的数据。,48,49,特征根与各因子的贡献,50,没有旋转的因子结构,51,52,在这个例子中我们得到了两个因子,第一个因子是社会经济发展水平因子,第二个是计划生育因子。有了因子得分值后,则可以利用因子得分为变量,进行其他的统计分析。,方差最大旋转后的因子结构,标准化得分函数,53,6 因子分析的步骤、展望和建议,计算所选原始变量的相关系数矩阵 相关系数矩阵描述了原始变量之间的相关关系。可以帮助判断原始变量之间是否存在相关关系,这对因子分析是非常重要的,因为如果所选变量之间无关系,做因子分析是不恰当的。并且相关系数矩阵是估计因子结构的基础。,选择分析的变量 用定性分析和定量分析的方法选择变量,因子分析的前提条件是观测变量间有较强的相关性,因为如果变量之间无相关性或相关性较小的话,他们不会有共享因子,所以原始变量间应该有较强的相关性。,一、因子分析通常包括以下五个步骤,54,提取公共因子 这一步要确定因子求解的方法和因子的个数。需要根据研究者的设计方案或有关的经验或知识事先确定。因子个数的确定可以根据因子方差的大小。只取方差大于1(或特征值大于1)的那些因子,因为方差小于1的因子其贡献可能很小;按照因子的累计方差贡献率来确定,一般认为要达到60才能符合要求;因子旋转 通过坐标变换使每个原始变量在尽可能少的因子之间有密切的关系,这样因子解的实际意义更容易解释,并为每个潜在因子赋予有实际意义的名字。,55,计算因子得分 求出各样本的因子得分,有了因子得分值,则可以在许多分析中使用这些因子,例如以因子的得分做聚类分析的变量,做回归分析中的回归因子。,56,因子分析是十分主观的,在许多出版的资料中,因子分析模型都用少数可阐述因子提供了合理解释。实际上,绝大多数因子分析并没有产生如此明确的结果。不幸的是,评价因子分析质量的法则尚未很好量化,质量问题只好依赖一个“哇!”准则,如果在仔细检查因子分析的时候,研究人员能够喊出“哇,我明白这些因子”的时候,就可看着是成功运用了因子分析方法。,57,因子分析和主成分分析的一些注意事项,可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。另外,如果原始变量都本质上独立,那么降维就可能失败,这是因为很难把很多独立变量用少数综合的变量概括。数据越相关,降维效果就越好。在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系在用因子得分进行排序时要特别小心,特别是对于敏感问题。由于原始变量不同,因子的选取不同,排序可以很不一样。,58,SPSS实现(因子分析与主成分分析),拿student.sav为例,选AnalyzeData ReductionFactor进入主对话框;把math、phys、chem、literat、history、english选入Variables,然后点击Extraction,在Method选择一个方法(如果是主成分分析,则选Principal Components),下面的选项可以随意,比如要画碎石图就选Scree plot,另外在Extract选项可以按照特征值的大小选主成分(或因子),也可以选定因子的数目;之后回到主对话框(用Continue)。然后点击Rotation,再在该对话框中的Method选择一个旋转方法(如果是主成分分析就选None),在Display选Rotated solution(以输出和旋转有关的结果)和Loading plot(以输出载荷图);之后回到主对话框(用Continue)。如果要计算因子得分就要点击Scores,再选择Save as variables(因子得分就会作为变量存在数据中的附加列上)和计算因子得分的方法(比如Regression);之后回到主对话框(用Continue)。这时点OK即可。,59,主成分分析:洛衫矶对12个人口调查区的数据,编号 总人口 总雇员数 中等校 专业服务 中等房价 平均校龄 项目数 1570012.8250027025000 2100010.96001010000 334008.81000109000 4380013.6170014025000 5400012.8160014025000 682008.326006012000 7120011.44001016000 8910011.533006014000 9990012.534001801800010960013.73600390250001196009.63300801200012940011.4400010013000,60,特征值、累积贡献率,61,特征值图,62,二主成分因子负荷图,63,主成分的因子负荷(每列平方和为相应特征值,而每列除以相应特征值的平方根为相应的特征向量)这是主成分与各个变量的相关系数,有的书把它当成特征向量了SPSS没有给出特征向量,64,销售人员数据(50个观测值),销售增长 销售利润 新客户销售额 创造力 机械推理 抽象推理 数学推理93.0096.0097.809.0012.009.0020.0088.8091.8096.807.0010.0010.0015.0095.00100.3099.008.0012.009.0026.00101.30103.80106.8013.0014.0012.0029.00102.00107.80103.0010.0015.0012.0032.0095.8097.5099.3010.0014.0011.0021.0095.5099.5099.009.0012.009.0025.00110.80122.00115.3018.0020.0015.0051.00102.80108.30103.8010.0017.0013.0031.00106.80120.50102.0014.0018.0011.0039.00103.30109.80104.0012.0017.0012.0032.0099.50111.80100.3010.0018.008.0031.00103.50112.50107.0016.0017.0011.0034.0099.50105.50102.308.0010.0011.0034.00,65,特征值、累积贡献率,66,特征值图,67,二主成分因子负荷图,68,主成分的因子负荷(每列平方和为相应特征值,而每列除以相应特征值的平方根为相应的特征向量)这是主成分与各个变量的相关系数,有书把它当成特征向量了SPSS没有给出特征向量,69,因子分析:洛衫矶对12个人口调查区的数据,编号 总人口 总雇员数 中等校 专业服务 中等房价 平均校龄 项目数 1570012.8250027025000 2100010.96001010000 334008.81000109000 4380013.6170014025000 5400012.8160014025000 682008.326006012000 7120011.44001016000 8910011.533006014000 9990012.534001801800010960013.73600390250001196009.63300801200012940011.4400010013000,70,StatisticsData Reduction Factor:Variables:pop,school,employ,service,houseDescriptive:Statistics(Univariate Descriptives,Initial solution),Correlation Matrix(Coefficients,Significance levels)Extraction:Method(Principal component),Analyze(Correlation matrix),Extract(Number=2 factors)Display(Unrotated factor solution,Scree plot),Maximum Iterations for(25)Rotation:Method(Varmax),Display(Rotated solusion,Loading plot),Maximum Iterations for(25)Score:Save as variables,Method(Regression),Display factor score coefficient matrixOptions:Missing Value(Exclude cases Listwise),Coefficient display format(Sorted by size),71,72,73,共同度Sjaij,74,75,旋转前的因子载荷,正交变换阵,76,旋转后的因子载荷,第一主因子对中等房价,中等校平均校龄,专业服务项目有绝对值较大的载荷(代表一般社会福利-福利条件因子);而第二主因子对总人口和总雇员数有较大的载荷(代表人口-人口因子).,77,旋转后的因子载荷图,78,因子得分的计算基础(F=bX)中的b。,把n个观测值代入得到FACT_1和FACT_2存入数据对每个观测值有两个因子得分(一点),Fj=bj1X1+bj5X5,j=1,2,79,因子得分之间不相关,