最新必修5解三角形知识点和练习题(含答案).doc
高二数学期末复习专题解三角形复习要点1正弦定理:或变形:.2余弦定理: 或.3(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角. 2、已知两边和他们的夹角,求第三边和其他两角.4判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5解题中利用中,以及由此推得的一些基本关系式进行三角变换的运算,如: .一正、余弦定理的直接应用:1、ABC中,a=1,b=, A=30°,则B等于( )A60°B60°或120°C30°或150°D120°2、在ABC中,角对应的边分别是,若,求 3、在ABC中,若SABC= (a2+b2c2),那么角C=_.4若ABC的周长等于20,面积是10,A60°,则BC边的长是( )A5 B6 C7 D85在ABC中,CA,sinB.(1)求sinA的值;(2)设AC,求ABC的面积6在ABC中,若,且,边上的高为,求角的大小与边的长二判断三角形的形状7、在锐角三角形ABC中,有( )AcosA>sinB且cosB>sinABcosA<sinB且cosB<sinACcosA>sinB且cosB<sinADcosA<sinB且cosB>sinA8、若(a+b+c)(b+ca)=3bc,且sinA=2sinBcosC, 那么ABC是( )A直角三角形 B等边三角形 C等腰三角形 D等腰直角三角形9、钝角ABC的三边长分别为x,x+1,x+2,其最大角不超过120°则实数x的取值范围是: 10.已知、分别是的三个内角、所对的边(1)若面积求、的值;(2)若,且,试判断的形状三测量问题11在200 m高的山顶上,测得山下塔顶和塔底的俯角分别为30°,60°,则塔高为( )A. m B. m C. m D. m12测量一棵树的高度,在地面上选取给与树底共线的A、B两点,从A、B两点分别测得树尖的仰角为30°,45°,且AB=60米,则树的高度为多少米?13.如图,四边形ABCD中,BC120°,AB4,BCCD2,则该四边形的面积等于()A.B5 C6 D714.一缉私艇发现在北偏东方向,距离12 nmile的海面上有一走私船正以10 nmile/h的速度沿东偏南方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东的方向去追,.求追及所需的时间和角的正弦值.ABC北东15.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C.景区管委会又开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向上8 km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB5 km.(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(2)求景点C和景点D之间的距离四正、余弦定理与三角函数,向量的综合应用16、设A、B、C为三角形的三内角,且方程(sinBsinA)x2+(sinAsinC)x +(sinCsinB)=0有等根,那么三边a,b,c的关系是 17在ABC中,则的最大值是_。 18在ABC中,C是钝角,设则的大小关系是_。19.ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列, ()求的值;()设的值。20(2010浙江文数)在ABC中,角A,B,C所对的边分别为a,b,c,设S为ABC的面积,满足。()求角C的大小;()求的最大值。21、(2010安徽理数)设是锐角三角形,分别是内角所对边长,并且。()求角的值;()若,求(其中)。22在锐角ABC中,已知内角A、B、C所对的边分别为a、b、c,向量m(2sin(AC),),n(cos2B,2cos21),且向量m、n共线(1)求角B的大小;(2)如果b1,求ABC的面积SABC的最大值高二数学解三角形复习专题答案1B 2。 3。 45° 4。C 5解:(1)由CA和ABC,得2AB,0<A<.故cos2AsinB,即12sin2A,sinA.(2)由(1)得cosA.又由正弦定理,得,BC·AC3.CA,CA,sinCsin(A)cosA,SABCAC·BC·sinCAC·BC·cosA××3×3.6解:所以有,联立得,即 当时,当时,当时,当时,。7B 8。 D 9。a<3. 10解:(1),得由余弦定理得:,所以(2)由余弦定理得:,所以。在中,所以。所以是等腰直角三角形;11A 12。 13。 B 14. 解: 设A,C分别表示缉私艇,走私船的位置,设经过 小时后在B处追上, 则有 ,所以所需时间2小时, 15解:(1)在ABD中,ADB30°,AD8 km,AB5 km,设DBx km,则由余弦定理得5282x22×8×x·cos30°,即x28x390,解得x4±3.43>8,舍去,x43,这条公路长为(43)km.(2)在ADB中,sinDAB,cosDAB.在ACD中,ADC30°75°105°,sinACDsin180°(DAC105°)sin(DAC105°)sinDACcos105°cosDACsin105°··.在ACD中,CD km.16a+c=2b 17。 18 19解:()由由b2=ac及正弦定理得 于是()由由余弦定理 b2=a2+c22ac+cosB 得a2+c2=b2+2ac·cosB=5.22解:(1)mn,2sin(AC)(2cos21)cos2B0.又ACB,2sinBcosBcos2B,即sin2Bcos2B.tan2B,又ABC是锐角三角形,0<B<,图1-5 购物是对消费环境的要求分布0<2B<,2B,故B.(2)由(1)知:B,且b1,由余弦定理得公司成功地创造了这样一种气氛:商店和顾客不再是单纯的买卖关系,营业员只是起着参谋的作用,顾客成为商品或者说是作品的作参与者,营业员和顾客互相交流切磋,成为一个共同的创作体b2a2c22accosB,即a2c2ac1.1aca2c22ac,随着社会经济、文化的飞跃发展,人们正从温饱型步入小康型,崇尚人性和时尚,不断塑造个性和魅力的现代文化价值观念,已成为人们的追求目标。因此,顺应时代的饰品文化显示出强大的发展势头和越来越广的市场,从事饰品销售是有着广阔的市场空间。即(2)ac1,ac2,当且仅当ac时,等号成立20公司还组织各国的“芝自制饰品店”定期进行作品交流,体现东方女性聪慧的作品曾在其他国家大受欢迎;同样,自各国作品也曾无数次启发过中国姑娘们的灵感,这里更是创作的源泉。400-500元1326%如果顾客在消费中受到营业员的热情,主动而周到的服务,那就会有一种受到尊重的感觉,甚至会形成一种惠顾心理,经常会再次光顾,并为你介绍新的顾客群。而且顾客的购买动机并非全是由需求而引起的,它会随环境心情而转变。图1-2 大学生购买手工艺品可接受价位分布大学生对手工艺制作兴趣的调研调研提纲:21在调查中我们注意到大多数同学都比较注重工艺品的价格,点面氛围及服务。