自动配料生产线PLC计算机控制.doc
计算机控制技术与应用基于PLC的配料生产 专业:电器工程与自动化 系别:自动化 班级:B10040826 学号:B10040826 姓名:王宁 摘要本文通过PLC在自动生产线上的使用,来介绍PLC的一些基本指令及功能。现在的工业生产的发展趋势,是趋向自动化发展。工厂的自动化程度越高,其工厂的作业人员的劳动强度就越低,相反其生产效率越高。本文讲述的是通过PLC顺序动作设计一条自动配料的生产线的设计,通过相关设计可以使自动配料生产线的自动化程度相对的提高。关键词:自动配料生产线,PLC,自动化目 录第一章 绪论.31.1 选题的背景和意义41.1.1 PLC的概述41.2 可编程控制器的发展和应用5第二章 系统的总体设计62.1 方案的选择62.1.1 PLC选型62.2 系统的总体设计72.2.1系统的简介72.2.2 系统控制要求92.2.3 系统工作原理10第三章 硬件设计123.1 硬件选型123.2 硬件电路设计153.2.1 主电路设计153.2.2 控制电路的设计163.2.3 A/D 转换电路设计17第四章 软件设计194.1 系统流程194.1.1 流程图 194.2.2系统的语句表23结论26参考文献27第一章 绪 论1.1 选题的背景和意义 1.1.1 PLC的概述PLC是可编程控制器(Programmable Controller)的简称,是一种在继电接触器控制技术和计算机控制技术的基础上发展起来的一种新型工业自动控制装置。早期的可编程控制器仅有逻辑运算、定时、计数等基本功能,主要用来取代传统的继电器控制,因此,通常将其称为可编程逻辑控制器(Programmable Logic Controller)。随着微电子技术和计算机技术的发展,微处理器技术应用到PLC中,使PLC不仅具有逻辑控制功能,还增加了算术运算、通信联网等功能。但是,为了不与个人计算机(Personal Computer)的简称PC相混淆,常常还将可编程控制器简称为PLC。1.1.2 配料存在的问题及解决方法配料工序是工业生产过程中非常重要的环节,其配料精度直接影响着产品的质量。国内配料厂前期投入使用的微机配料系统大部分是国外引进的。随着我国电脑工业的发展,微机配料系统已逐步国产化,我国许多科研、生产单位都投入到开发生产的行列。配料系统普遍存在的问题是:配料精度低,机电控制部分的可靠性差,缺少数据库管理生产以及对生产过程的实时动态监视。配料精度低的主要原因是电子秤系统的动态性范围小,而可靠性差主要是中间继电器和微机控制系统的可靠性低所致。针对实际问题,我们采用西门子S7-200/226型可编程程序控制器来代替中间继电器和过程控制的微型机,设计开发了配料控制系统,并已成功地应用于实践。为了实现生产过程的动态监视,使用微机系统机与PLC通令,在彩色屏幕上显示出动态生产和数据。经实际运行,该系统技术性能优良,运行稳定可靠,操作直观方便,对配料控制取得成功。根据配料工艺控制要求与特点,我们采用了德国西门子公司S7-200型PLC。西门子PLC有小型化、高速度、高性能等特点,是S7-200系列中最高档次的超小型程序装置。西门子可编程控制器指令丰富,可以接各种输出、输入扩充设备,有丰富的特殊扩展设备,其中的模拟输入设备和通信设备是系统所必需的,能够方便地联网通信。1.2 可编程控制器的发展和应用可编程序控制器是以微处理器为基础,综合计算机、通信、联网以及自动控制技术而开发的新一代工业控制装置。可编程序控制器在我国的发展与应用已有30多年的历史,现在它已经广泛应用于国民经济的各个工业生产领域,成为提高传统工业装备水平和技术能力的重要设备和强大支柱。随着全球一体化经济的发展,努力发展可编程序控制器在我国的大规模应用,形成具有自主知识产权的可编程序控制器技术,应该是广大技术人员努力的方向。第二章 系统的总体设计2.1 方案的选择2.1.1 PLC选型从上面的分析可以知道,系统共有开关量输入点10个,开关量输出点13个,如果选用CPU222 / PLC,也需要扩展单元 PLC,参照西门子S7-200产品目录及市场实际价格,选用主机为CPU224(14 输入/10继电器输出)。根据我们的实际情况,这里我们设计选用CPU226。其外形图如下图2-1所示。 图2-1 CPU 226 DC/DC/DC 端子连接图2.1.2 I/O分配如下图2-2所示。输入代码输出代码名称代码编码名称代码编码紧急停止按钮SB1I0.0料仓下料电磁阀1YA1Q0.0单周期运行启动按钮SB2I0.1料仓下料电磁阀2YA2Q0.1自动运行启动按钮SB3I0.2仓壁振动器电机1KM1Q0.2自动运行停止按钮SB4I0.3仓壁振动器电机2KM2Q0.3传送带1号手动按钮SB5I0.4喂料振动器电机1KM3Q0.4搅拌机手动运行按钮SB6I0.5喂料振动器电机2KM4Q0.5传送带2号手动按钮SB7I0.6送料皮带1电机KM5Q0.6传感器1S1I0.7排料振动器电机1KM6Q0.7传感器2S2I1.0排料振动器电机2KM7Q1.0热继电器过载FRI1.1中间仓门电磁阀YA3Q1.1搅拌机KM8Q1.2送料皮带2电机KM9Q1.3卸料门电磁阀YA4Q1.4图2-2 I/O分配2.2 系统的总体设计2.2.1系统的简介系统组成可见图2-3所示,该系统主要由料仓、仓壁振动器、喂料振动器、称料仓、排料振动器、传送带、中间仓、混合仓、搅拌机组成;各振动器、传送带、搅拌机均由电机拖动;下料门、中间仓门、卸料门则由电磁阀控制,称料仓料量由传感器来检测。设计中均采用倒置上锥体结构同时为了防止物料卸入时引起的振动干扰选用压力式称重传感器(1)料仓料仓位于称料仓以上,为称料仓提供物料,当系统启动时,下料电磁阀打开时开始下料。(2)称料仓称料仓用于储存配比物料并具有上下料位显示当物料高于上料位时关闭该料仓的进料系统当物料低于下料位时打开该料仓的进料闸门并同时发出允许进料的灯光指示信号物料量采用压力传感器它抗干扰能力强对环境要求低同时设有报警装置当高于上料位或低于下料位时报警。(3)称重传感器称重传感器以自动称重方式将散状或液状物料按预定的配比进行称重可控制物料的秤量卸料。当需要配料时,首先将所需要的配料物料的质量数字输入到单片机系统中,由于压力的作用此时称重传感器内部的电阻应变片发生变形,电桥平衡状态被破坏,桥式电路会输出相应的电压信号,经过运算放大电路和A/ D 转换电路输入到单片机系统中,即可实时计算出所受配料的质量,并和开始时输入的数值进行比较。如果此次所受的料重小于输入的料重,则料仓继续下料,同时单片机记下这次的质量,直到称重传感器承受的配料与实际质量之和满足输入配料的误差要求时;也就是说称重传感器检测值与设定值相等时,称重传感器的开关闭合同时停止下料、喂料仓壁振动器,当检测到实际质量在所要求的误差范围内时,单片机系统立即触发可控硅,输出较高的电压,以防过多的配料下落,影响配料精度。此称重传感器性能稳定抗干扰能力强功耗低可靠性高, 具有较强的抗过载能力和较长的使用寿命特别适用于工业现场恶劣环境下高准确度配料的技术要求。 硬件的选择:1.重量传感器(ICS-14A型高精度电子皮带秤) 2.振动器 (ZDN130型振动器) 3.电磁阀 (ZCA DN20)4.搅拌机 (VHJ100卧式混合机) 图2-3可编程控制配料系统图2.2.2 系统控制要求物料的定量控制曲线如图 2-4所示。按下启动按钮料仓一(二)下料仓壁振动器一(二)启动喂料振动器一(二)启动将料喂入称料仓当传感器S1(S2)都为1时喂料振动器停止,下料停止,同时仓壁振动器一(二)也停止送料皮带一启动10S后排料振动器一(二)启动进行排料300S后中间仓门打开3S后调合机启动300S后启动送料皮带二并打开御料门将料送到送料斗车里300S后全部停止。一个周期结束。本设计能自动、单周期运行、可进行手动操作(传送带1、传送带2、搅拌电机)。图2-4 物料的定量控制曲线图0 t0 称料仓处于空秤阶段下料仓电磁阀静止t0 t1 启动下料仓电磁阀快速加料t1 t2 下料仓电磁阀中速加料t2 t3 下料仓电磁阀慢速加料t3 t4 关闭下料仓电磁阀后由于惯性而落入称料仓的物料t4 t5 称料仓处于稳定状态传感器将称重数据发送给上位机t5 t6 排料振动器启动传送带一运行打开放出物料至中间仓门并由称量传感器输出空信号2.2.3 系统工作原理该系统有手动和自动、单周期运行三种功能模式。(1)手动运行按下按钮启动或停止电机,实行对1号传送带、2号传送带和搅拌机的手动调整。该方式主要供检修及还有剩料时用。(2)自动运行合上自动开关后,下料电磁阀通电,仓壁振动器、喂料振动器相继工作,同时A/ D 转换电路将接受到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给PLC,对配料进行调节,当传感器都为时停止下料、仓壁、喂料振动器,同时送料皮带一得电,送料皮带一启动10S后排料振动器一(二)启动进行排料300S后中间仓门打开3S后调合机启动300S后启动送料皮带二并打开御料门将料送到送料斗车里300S后全部停止。系统自动完成对多台电机软起动、停止、循环工作的全部操作过程。直到按下停止按钮第三章 硬件设计3.1 硬件选型3.1.1 PLC硬件组成硬件系统就如人的躯体。PLC的硬件系统主要由中央处理器(CPU)、存储器(RAM、ROM)、输入输出单元(IO)、电源、通信接口、IO扩展接口等组成,这些单元都是通过内部的总线进行连接的。3.1.2 PLC基本结构介绍(1)主机主机由CPU(微处理器)、存储器、输入输出单元、电源等部分组成。CPU是PLC的核心,其作用类似于人的大脑。它能够识别用户按特定格式输入的指令,并按照指令完成预定的控制任务。另外,它还能识别用户所输入的指令序列的格式和语法错误,还具有系统测试与诊断功能。PLC的存储器有两种:系统程序存储器和用户程序存储器。系统程序存储器主要用于存放系统正常工作所必须的程序,如系统诊断程序、键盘输入处理程序、指令解释程序、监控程序等。这些程序与用户无直接关系,已由厂家直接固化进EPROM中,不能由用户直接存取、修改。用户程序存储器主要存放用户程序(用户利用PLC的编程语言按不同控制要求所编制的控制程序或数据,这相当于设计继电器控制系统硬接线的控制电路图),可修改。输入输出(IO)单元是PLC与输入控制信号和被控制设备连接起来的部件,输入单元接收从开关、按钮、继电器触点和传感器等输入的现场控制信号,并将这些信号转换成CPU能接收和处理的数字信号。输出单元接收经过CPU处理过的输出数字信号,并把它转换成被控制设备或显示装置所能接收的电压或电流信号,以驱动接触器、电磁阀和指示器件等。根据输入信号形式的不同,可分为模拟量I/O单元、数字量I/O单元两大类。电源单元的作用是把外部电源(220V的交流电源)转换成内部工作电压。外部连接的电源,通过PLC内部配有的一个专用开关式稳压电源,将交流/直流供电电源转化为PLC内部电路需要的工作电源(直流5伏、±12伏、24伏),并为外部输入元件(如接近开关、)提供24V直流电源(仅供输入端点使用),而驱动PLC负载的电源由用户提供。电源组件内还装有备用锂电池,以保证在断电时保存必要的信息。PLC还有各种外设接口电路,用于连接编程器或其他图形编程器、文本显示器、触摸屏、变频器等并能通过外设接口组成PLC的控制网络。PLC通过PC/PPI电缆或使用MPI卡通过RS-485接口与计算机连接,可以实现编程、监控、连网等功能。(2)I/O扩展机每种PLC都有与主机相配的扩展模块,用来扩展输入、输出点数,以便根据控制要求灵活组合系统。PLC扩展模块内不设CPU,仅对I/O通道进行扩展,不能脱离主机独立实现系统的控制要求。( 3)外部设备外部设备包括编程器、盒式磁带机、打印机、EPROM写入器、图形监控系统等。其中编程器是PLC必不可少的重要外围设备,由键盘、显示器、工作方式选择开关和外存储器接插口等部件组成,主要用于对用户程序进行输入、检查、调试和修改,并用来监视PLC的工作状态。编程器有简易型和智能型两类。简易型编程器只能联机编程,且需将梯形图转化为助记符后才能送入。智能型编程器又称图形编程器,它既可联机编程,又可脱机编程,具有图形显示功能,可直接输入梯形图和通过屏幕对话,但价格较贵。现在也可在计算机上填加适当的硬件接口,利用生产厂家提供的编程软件包就可将计算机作为编程器使用,而且还可以在计算机上模拟调试。PLC与打印机相连可将过程信息,系统参数等输出打印。当与监视器相连时可将控制过程图象显示出来。当PLC与PLC相连时,可组成多机系统或连成网络,实现更大规模控制。当PLC与计算机相连时,可组成多级控制系统,实现控制与管理相结合的综合系统。3.1.3 步的相关概念将系统的一个工作周期划分为若干个顺序相连的阶段,这些阶段称为步。步是根据PLC输出量的状态划分的,只要系统的输出量状态发生变化,系统就从原来的步进入新的步。在每一步内PLC各输出量状态均保持不变,但是相邻两步输出量总的状态是不同的。用矩形方框表示步,方框中一般用位存储器或顺序控制继电器的地址来表示该步的编号。与系统的初始状态相对应的步称为初始步,用双线框表示。系统正处于某一步所在的阶段时,该步处于活动状态,称该步为“活动步”。1 动作的画法如果某一步有两个或多个动作,其画法如图3-1所示。图3-1 动作的画法图2转换与转换条件(1)转换条件的表示方法转换条件的表示方法如图3-2所示。图3-2 转换条件的表示方法图(2)转换实现的条件该转换所有的前级步都是活动步。相应的转换条件得到满足。 (3)转换实现应完成的操作使所有的后续步变为活动步。使所有的前级步变为不活动步。3.2 硬件电路设计3.2.1 主电路设计 该系统包括9台电动机M1、M2、M3、M4、M5、M6、M7、M8、M9,5个熔断器起短路保护的作用。9个热继电器起过载保护的作用主电路图2-3如下所示。图2-3 主电路图其中接触器KM1、KM2、KM3、KM4、KM5、KM6、KM7、KM8、KM9分别控制M1、M2、M3、M4、M5、M6、M7、M8、M9电机运行。3.2.2 控制电路的设计控制电路分继电器控制电路及PLC外部接线图电路,电路图2-4如下。图2-4 继电器控制电路图上图2-4所示给出了系统的控制电路图:其中KM1、KM2、KM3、KM4、KM5、KM6、KM7、KM8、KM9分别控制M1、M2、M3、M4、M5、M6、M7、M8、M9电机运行。YA1、YA2、为下料电磁阀,YA3为中间仓门电磁阀YA4为卸料门电磁阀。SB1、SB2、SB3、SB4、SB5、SB6、SB7分别为紧急停止按钮、单周期运行启动按钮、自动运行启动按钮、自动运行停止按钮、传送带1手动运行按钮、搅拌机手动运行按钮、传送带2手动运行按钮,S1、S2|、分别为两个压力传感器。FR1、FR2、FR3、FR4、FR5、FR6、FR7、FR8、FR9分别为M1、M2、M3、M4、M5、M6、M7、M8、M9过载、欠压、断相保护。3.2.3 A/D 转换电路设计AD7824 是美国AD 公司生产的4 通道8 位A/D转换器,由于采用半闪速转换技术,使得每一通道的转换时间为2. 5 s,并且内置有采样保持电路,单一+ 5 V供电出引脚电平与TTL 电平兼容,可直接和单片机相连,不需另加接口电路,如下图2-5所示。图2-5 A/D转化电路图第四章 软件设计 4.1 系统流程4.1.1 流程图 如图4.1所示。图3-1 系统流程图4.2.1 系统的梯形图其梯形图如下图3-2所示。图3-2系统梯形图4.2.2系统的语句表语句表如下图3-3所示。图3-3 语句表图结论本文在分析和比较用于可编程控制配料系统的发展和现状的基础上,结合我国中小城市配料的现状,设计了一套以自动控制技术、传感器技术为基础的PLC自动控制系统。在这次毕业设计中有如下认识:1、在可编程控制配料系统中,配料比例的调节是通过传感器来改变下料、排料量,从而调节配料精度。可以看出利用PLC实现自动、单周期、手动运行,当送料皮带和搅拌机出现故障时通过手动操作来调节,当定时器设定时间达到预设值时对应的器件相应工作,当整个过程操作完毕时系统自动回到初始状态或继续下一个周期的工作。2、可编程控制配料系统主要是由料仓、仓壁振动器、喂料振动器、称料仓、排料振动器、传送带、中间仓、混合仓、搅拌机组成。3、通过对我国配料厂所采用的配料进行分析,认为了传统的配料控制模式是一种被动的控制方式,对各台设备分别设定,来满足配比的要求。当生产情况发生变化,需要改变下料量时,则需要再次分别计算各物料的设定值,再次分别设定。计算,操作时间长,且容易出错,给生产带来不良因素。针对传统控制模式的缺陷,提出了综合考虑配料精度调节方法,为改进配料控制系统的设计提供了依据。4、通过自行的设计,使我深刻认识到,实践是检验理论的真理。只要在实践中不断去探索,去学习,相信一定能成功!参考文献1 孙平编著,2003年1月,可编程控制器原理及应用, 高等教育出版社2 西门子(中国)有限公司SIMATIC S7-200可编程序控制器系统手册20023 张运波编著,2001年7月,工厂电气控制技术,高等教育出版社4 华满香、刘小春编著,电气控制与PLC应用,人民邮电出版社5 王永华编著,2002年9月,现代电气及可编程控制技术,北京航空航天大学出版社6 程周编著,2003年4月,可编程控制器原理与应用,高等教育出版社 7 胡学林编著,2001年8月,可编程控制器应用技术,高等教育出版社8 贾德胜编著,PLC应用开发实用子程序9中国工控信息网10 西门子(中国)自动化网