欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    第二课时圆柱圆锥圆台球的结构特征课件.ppt

    • 资源ID:3852938       资源大小:1.45MB        全文页数:18页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第二课时圆柱圆锥圆台球的结构特征课件.ppt

    第二课时圆柱、圆锥、圆台、球的结构特征,栏目链接,1掌握圆柱、圆锥、圆台、球的结构特征2培养学生对空间旋转体的观察能力和空间想象能力,栏目链接,典 例 精 析,题型一 旋转体的概念,栏目链接,旋转体的形状关键在于轴的确定,应结合想象力或动手做去分析所形成的几何体例1 一个有30角的直角三角板绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180得到什么图形?旋转360又得到什么图形?分析:解答本题可先分析各种可能的旋转轴,然后根据旋转体的有关概念及空间想象能力进行判断,栏目链接,解析:图(1)、(2)旋转一周围成的几何体是圆锥,图(3)旋转一周所得几何体是两个圆锥组合体;图(4)旋转180是两个半圆锥的组合体,旋转360是一个圆锥点评:对于(4),容易认为旋转360之后,得到两个圆锥这是不正确的,因旋转轴左侧的直角三角形旋转得到的几何体隐藏于右侧三角形旋转得到的几何体中,栏目链接,跟踪训练1(1)以等腰梯形的对称轴为轴旋转一周,所形成的旋转体是_(2)下图是由_几何体组成的答案:(1)圆台(2)球、圆柱,题型二 旋转体的结构特征,栏目链接,旋转体主要看是由什么几何图形绕旋转轴旋转而成例2根据下列对几何体结构特征的描述,说明几何体的名称(1)一个等腰梯形绕着两底边中点的连线所在的直线旋转180形成的封闭曲面所围成的几何体;(2)一个直角梯形绕较长的底边所在的直线旋转一周形成的曲面所围成的几何体;(3)一个圆绕其一条直径所在的直线旋转180形成的封闭曲面围成的几何体,栏目链接,解析:(1)如图(1),等腰梯形两底边中点的连线将梯形等分为两个直角梯形,每个直角梯形旋转180形成半个圆台,故该几何体为圆台(2)如图(2),可以将梯形ABCD分为一个直角三角形AOD和矩形AOCB,绕CD旋转一周形成一个组合体,是由一个圆锥和一个圆柱组成的(3)如图(3),是一个球,分析:要正确判断几何体的类型,应熟练掌握各类几何体的结构特征,栏目链接,点评:抓住定义是判断的关键,对于不规则的图形绕轴旋转问题,要对平面图形作适当的分析,再根据柱、锥、台、球的结构特征进行判断,栏目链接,跟踪训练2下列命题中,正确的是(C)A直角三角形绕一条边旋转得到的旋转体是圆锥B夹在圆柱的两个平行截面间的几何体还是一个旋转体C圆锥截去一个小圆锥后剩余部分是圆台D通过圆台侧面上一点,有无数条母线,栏目链接,解析:A错误,应为直角三角形绕其一条直角边旋转得到的旋转体是圆锥;若绕其斜边旋转得到的是两个圆锥构成的一个几何体,如图(1)B错误,没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时正确,其他情况则结论是错误的,如图(2)D错误,通过圆台侧面上一点,只有一条母线,如图(4)C正确,如图(3),题型三 旋转体的侧面展开图,栏目链接,旋转体的侧面展开图是沿着一条母线将侧面展为平面,栏目链接,栏目链接,跟踪训练3若本例中蚂蚁围绕圆柱转两圈,如图所示,则它爬行的最短距离是多少?,栏目链接,有关的数学名言数学知识是最纯粹的逻辑思维活动,以及最高级智能活力美学体现。普林舍姆历史使人聪明,诗歌使人机智,数学使人精细。培根数学是最宝贵的研究精神之一。华罗庚没有哪门学科能比数学更为清晰地阐明自然界的和谐性。卡罗斯数学是规律和理论的裁判和主宰者。本杰明,

    注意事项

    本文(第二课时圆柱圆锥圆台球的结构特征课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开