中国对美国进口总额的分析.doc
中国对美国进口总额的分析中美两国,一个是发展中的大国,一个是经济、科技发达的大国,两国都有广阔的市场,经济互补性很强。现在中美两国间贸易往来十分频繁,美国是中国进口商品主要的来源地。目前,两国贸易额已达400多亿美元,比1979年增加了数十倍。中国是美国小麦、磷肥、木材的主要销售市场,是美波音公司的第四大用户,也是美国计算机、工业机械等产品的最大买主之一。中国从美国的进口逐年递增。美国已成为屈居日本之后的世界第二大中国进口来源国。中美各自的一些产品对对方市场的依赖性已初步形成。中国经济正在持续、快速地发展,发展的重点交通、通信和能源等领域,正是美国的强项。中国市场的巨大潜力对美国有着非常大的吸引力。正是中美在经济利益上的一致性,为中美关系的改善和发展带来了历史性机遇,并成为双边关系的核心。因此,研究中国对美国的进口额是有现实意义的。就基本的来说,一个国家的进口额应该和很多方面有关,例如进口国的失业率,关税,经济发展情况,与他国的贸易关系紧密程度,汇率等有关。于是,我们以Y作为中国对美国的进口额(亿元)为应变量,并且假设了几个解释变量,它们分别是X1中国的GOD(亿元),X2中国历年的贸易关税总额(亿元),X3人民币的汇率,X4居民平均消费水平(元),X5中国的人口数,X6失业率,以及X7它作为一个比较特殊的值来衡量中国与美国之间的贸易关系。中国与美国因为各种原因,两国间的关系时好时差,因此,构建模型时,也把这种原因也考虑了进去。当两国较好时,设其值为1,不好时其值为0。刚开始假设模型为Y=C+B1X1+B2X2+B3X3+B4X4+B5X5+B6X6+B7X7+U。我们再来验证该模型的可行性。一假设初始模型obsYX1X2X3X4X5X6X71991 426.2328 21617.80 187.2800 5.322700 896.0000 11.43330 2.300000 1.0000001992 473.9395 26638.10 212.7500 5.514900 1070.000 11.58230 2.300000 0.0000001993 977.4677 34634.40 256.4700 5.761900 1331.000 11.71710 2.600000 1.0000001994 1849.662 46759.40 272.6800 506187.0 1746.000 11.85170 2.800000 1.0000001995 2063.750 58478.10 291.8300 8.350700 2236.000 11.98500 2.900000 0.0000001996 1343.149 67884.60 301.8400 8.314200 2641.000 12.11210 3.000000 0.0000001997 1351.348 74462.60 319.4900 8.289800 2834.000 12.23890 3.100000 1.0000001998 1397.775 78345.20 313.0400 8.279100 2973.000 12.36260 3.100000 1.0000001999 1612.470 82067.50 562.2300 8.278300 3143.000 12.47610 3.100000 0.0000002000 1851.311 89442.20 750.4800 8.278400 3397.000 12.57860 3.200000 1.0000002001 2168.759 95933.30 840.5200 8.277000 3611.000 12.76270 3.200000 1.000000数据参考:中国对外贸易统计年鉴2000年,2002年版中国统计年鉴2000年,2002年版世界经济年鉴2001年版国际统计年鉴2001年版1用EVIEWS对各假设变量数据进行分析,得到下表:Dependent Variable: YMethod: Least SquaresDate: 12/14/03 Time: 12:39Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C52635.1929398.731.7903900.1713X10.5921950.2191742.7019350.0737X22.3058700.8766732.6302510.0783X3-0.0001700.000673-0.2520570.8173X4-14.128954.879698-2.8954570.0627X5-4820.7872455.986-1.9628730.1444X61165.4801570.3060.7422000.5118X7-478.8084163.9709-2.9200800.0615R-squared0.963212 Mean dependent var1410.533Adjusted R-squared0.877373 S.D. dependent var589.1776S.E. of regression206.3192 Akaike info criterion13.65199Sum squared resid127702.9 Schwarz criterion13.94137Log likelihood-67.08594 F-statistic11.22114Durbin-Watson stat2.600491 Prob(F-statistic)0.036258从上表中可以看出,可决系数比较大,然而模型F检验值和各解释变量的T检验值都比较小,因此,可以判断出该模型存在着较大的多重共线性,异方差以及自相关等多种缺陷。所以,应当适当的改变一下变量的形式,使得调整后的模型拟合程度更好。2针对解释变量X1来说,可以先寻找Y与X1之间的关系。计算出LY=LnY以及LX1=LnX1。依次对其进行分析,找出在Y与X1,Y与LnX1,LY与X1,LY与LnX1之间哪一组的相关程度最高。(具体分析如表一至表四所示) Dependent Variable: YMethod: Least SquaresDate: 12/14/03 Time: 10:36Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C333.4674324.45201.0277870.3309X10.0175190.0049013.5747750.0060R-squared0.586758 Mean dependent var1410.533Adjusted R-squared0.540843 S.D. dependent var589.1776S.E. of regression399.2336 Akaike info criterion14.97994Sum squared resid1434487. Schwarz criterion15.05228Log likelihood-80.38965 F-statistic12.77902Durbin-Watson stat1.004405 Prob(F-statistic)0.005979(表一) Dependent Variable: YMethod: Least SquaresDate: 12/14/03 Time: 11:54Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C-8839.5072445.733-3.6142570.0056LX1938.3851223.68334.1951510.0023R-squared0.661645 Mean dependent var1410.533Adjusted R-squared0.624050 S.D. dependent var589.1776S.E. of regression361.2528 Akaike info criterion14.78000Sum squared resid1174532. Schwarz criterion14.85234Log likelihood-79.28999 F-statistic17.59929Durbin-Watson stat1.107891 Prob(F-statistic)0.002323 (表二) Dependent Variable: LYMethod: Least SquaresDate: 12/14/03 Time: 12:58Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C6.0750630.28816221.082110.0000X11.73E-054.35E-063.9665340.0033R-squared0.636119 Mean dependent var7.136493Adjusted R-squared0.595688 S.D. dependent var0.557642S.E. of regression0.354579 Akaike info criterion0.927196Sum squared resid1.131539 Schwarz criterion0.999541Log likelihood-3.099580 F-statistic15.73339Durbin-Watson stat0.801747 Prob(F-statistic)0.003272 (表三) Dependent Variable: LYMethod: Least SquaresDate: 12/14/03 Time: 11:51Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C-3.1902841.990972-1.6023750.1435LX10.9454100.1820915.1919530.0006R-squared0.749697 Mean dependent var7.136493Adjusted R-squared0.721885 S.D. dependent var0.557642S.E. of regression0.294081 Akaike info criterion0.553044Sum squared resid0.778354 Schwarz criterion0.625389Log likelihood-1.041744 F-statistic26.95637Durbin-Watson stat0.930376 Prob(F-statistic)0.000570(表四)根据上述四表中的可决系数以及修正可决系数,可以看出在这里LY与LX的相关程度最好。按这种方法分别对其它变量进行比较分析。综合X2到X6的数据来看,采用LY=C +B1LX1+B2LX2+B3X3+B4LX4+B5X5+B6LX6+B7X7的这种拟合模型在目前来看最好。二分析初步调整后的模型obsLYLX1LX2X3LX4X5LX6X71991 6.054986 9.981272 5.232605 5.322700 6.797940 11.43330 0.832909 1.00000001992 6.161080 10.19010 5.360118 5.514900 6.975414 11.58230 0.832909 0.00000001993 6.884965 10.45260 5.547012 5.761900 7.193686 11.71710 0.955511 1.00000001994 7.522758 10.75277 5.608299 506187.0 7.465083 11.85170 1.029619 1.00000001995 7.632280 10.97641 5.676171 8.350700 7.712444 11.98500 1.064711 0.00000001996 7.202772 11.12556 5.709897 8.314200 7.878913 12.11210 1.098612 0.00000001997 7.208858 11.21805 5.766726 8.289800 7.949444 12.23890 1.131402 1.00000001998 7.242637 11.26888 5.746331 8.279100 7.997327 12.36260 1.131402 1.00000001999 7.385523 11.31530 6.331911 8.278300 8.052933 12.47610 1.131402 0.00000002000 7.523649 11.40135 6.620713 8.278400 8.130648 12.57860 1.163151 1.00000002001 7.681910 11.47141 6.734021 8.277000 8.191740 12.76270 1.163151 1.0000000 1用EVIEWS分析初步调整后的模型Dependent Variable: LYMethod: Least SquaresDate: 12/14/03 Time: 19:41Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C-12.6830218.18878-0.6972990.5358LX17.5298935.5473091.3573950.2677LX20.4738890.6562840.7220800.5224X32.63E-076.62E-070.3979410.7173LX4-8.5858955.625967-1.5261190.2244X5-0.5468992.419075-0.2260780.8357LX67.0384739.6947170.7260110.5203X7-0.2232430.339400-0.6577590.5577R-squared0.954451 Mean dependent var7.136493Adjusted R-squared0.848171 S.D. dependent var0.557642S.E. of regression0.217287 Akaike info criterion-0.059937Sum squared resid0.141640 Schwarz criterion0.229442Log likelihood8.329652 F-statistic8.980499Durbin-Watson stat2.030704 Prob(F-statistic)0.049289和原来的模型相类似的,虽然可决系数比较大,但是可以看出,F检验值与T-检验值都比较小,只不过它比原来的模型改善了一些而已。为了得到更好的模型,我们继续对其进行分析改善。三测定假定模型的多重共线性 1判断多重共线性的存在LX1LX2X3LX4X5LX6X7LX1 1.000000 0.818856-0.110582 0.999231 0.959603 0.989617 0.032945LX2 0.818856 1.000000-0.161073 0.821418 0.924216 0.781124 0.126631X3-0.110582-0.161073 1.000000-0.137983-0.192420-0.051156 0.239045LX4 0.999231 0.821418-0.137983 1.000000 0.962421 0.986364 0.020917X5 0.959603 0.924216-0.192420 0.962421 1.000000 0.929060 0.113288LX6 0.989617 0.781124-0.051156 0.986364 0.929060 1.000000 0.107568X7 0.032945 0.126631 0.239045 0.020917 0.113288 0.107568 1.000000从上表可以看出,各变量之间确实存在计较大的多重共线性,其中以LX1与LX4为最大,居然高达0.999231。LX4与LX6也高到了0.986364,而LX1与其他很多变量的相关程度都比较大。右图也可以看出,LX1与其它不少变量的趋势变化很类似,甚至与LX4的变化趋势线几乎可以完全重合。 这些也都与现实经济意义相吻合。GDP是衡量一个国家经济状况的综合指标,它牵涉到居民的投资,储蓄,消费等等很多方面,它与其他很多变量相关也是情理之中;如果一个国家的GDP比较高,那么可以认为这个国家比较繁荣,进而人民的生活水平很高,那么消费水平也就很高了。因为LX1与LX4之间相关程度很高,我们可以认为,人民的消费水平在很大程度上取决于GDP,也即是取决于一个国家的经济水平。而LX4与LX5高度相关就更好解释了,社会失业率高的话,居民就不敢将很多钱用于消费。反之亦然。 2消除共线性逐一求LY对各个解释变量的回归,选出拟合效果最好的一元线性回归方程。Dependent Variable: LYMethod: Least SquaresDate: 12/14/03 Time: 12:27Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C2.8957220.7166004.0409180.0029LX64.0441590.6791335.9548870.0002R-squared0.797574 Mean dependent var7.136493Adjusted R-squared0.775082 S.D. dependent var0.557642S.E. of regression0.264464 Akaike info criterion0.340746Sum squared resid0.629473 Schwarz criterion0.413090Log likelihood0.125899 F-statistic35.46068Durbin-Watson stat0.893408 Prob(F-statistic)0.000214在用EVIEWS对各变量进行分析后,可知LX6修正后的可决系数最大,这也说明了在中国对美国的进口中,最主要的决定因素是国内的失业率水平,并且它们之间呈正相关关系。从右图来看,LX6与LY存在着比较明显的线性关系。LY与LX6同向变化,这也与事实相符。进口额增多,也即是指进口的商品增多,会冲击到国内的生产厂家,使得一些厂家无法立足,濒临破产,于是会出现大量的裁员现象,进而社会的失业率也就升高了。将LX6作为进入回归模型的第一个解释变量,形成一元回归模型。再用同样的方法来选择第二个变量。VariableCoefficientStd. Errort-StatisticProb. C2.7822010.6027554.6158100.0017LX64.1081310.5698787.2087870.0001X31.01E-064.60E-072.1943590.0595R-squared0.873634 Mean dependent var7.136493Adjusted R-squared0.842042 S.D. dependent var0.557642S.E. of regression0.221629 Akaike info criterion0.051372Sum squared resid0.392954 Schwarz criterion0.159889Log likelihood2.717452 F-statistic27.65405Durbin-Watson stat1.793108 Prob(F-statistic)0.000255加入X3修正后的可决系数高达0.842042,该值大于加入其它各格变量的修正可决系数,于是将X3作为第二个解释变量。这也说明了汇率是对美国进口中一个很关键的因素。Dependent Variable: LYMethod: Least SquaresDate: 12/14/03 Time: 15:50Sample: 1991 2001Included observations: 11VariableCoefficientStd. Errort-StatisticProb. C2.7925990.6133534.5530050.0026LX64.1697550.5842597.1368220.0002X31.11E-064.83E-072.3007120.0549X7-0.1252270.146671-0.8537970.4215R-squared0.885552 Mean dependent var7.136493Adjusted R-squared0.836503 S.D. dependent var0.557642S.E. of regression0.225481 Akaike info criterion0.134125Sum squared resid0.355892 Schwarz criterion0.278814Log likelihood3.262311 F-statistic18.05443Durbin-Watson stat1.963033 Prob(F-statistic)0.001127在众多可决系数中,加入X7后的修正可决系数最大。但是这个值低于没加入第三个变量时的修正可决系数0.842042,于是可以决定模型最终为LY=C+B1X3+B2LX6+U三异方差的判定以及修正1判断异方差是否存在obsLYX3LX61991 6.054986 5.322700 0.8329091992 6.161080 5.514900 0.8329091993 6.884965 5.761900 0.9555111994 7.522758 506187.0 1.0296191995 7.632280 8.350700 1.0647111996 7.202772 8.314200 1.0986121997 7.208858 8.289800 1.1314021998 7.242637 8.279100 1.1314021999 7.385523 8.278300 1.1314022000 7.523649 8.278400 1.1631512001 7.681910 8.277000 1.163151先采用图示法来辨别 从图片来看,异方差并不是很明显,于是再通过ARCH检验进一步判断。 ARCH Test:F-statistic0.202192 Probability0.822284Obs*R-squared0.568275 Probability0.752663Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 12/14/03 Time: 16:32Sample(adjusted): 1993 2001Included observations: 9 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C0.0489300.0375321.3037020.2401RESID2(-1)-0.2376790.404877-0.5870410.5786RESID2(-2)0.0350130.4108130.0852290.9349R-squared0.063142 Mean dependent var0.040993Adjusted R-squared-0.249144 S.D. dependent var0.071743S.E. of regression0.080184 Akaike info criterion-1.947795Sum squared resid0.038576 Schwarz criterion-1.882053Log likelihood11.76508 F-statistic0.202192Durbin-Watson stat1.992098 Prob(F-statistic)0.822284从ARCH检验的分析表来看,模型不存在异方差。在a=0.05,自由度P=2,得到X2值为5.99,而(n-P)R*R=0.0359明显小于该值。所以可认为模型中不存在异方差。四自相关的判断与修正1首先采用图示法。 从右图来看,从E与E(-1)之间并没有存在着明显的自相关关系,于是这又需要进一步判断。