欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    人教版-九年级-24.圆课件.ppt

    • 资源ID:3829452       资源大小:3.35MB        全文页数:91页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版-九年级-24.圆课件.ppt

    圆,XXX 大学 张XXX,本章知识结构图,圆的基本性质,圆,圆的对称性,弧、弦圆心角之间的关系,同弧上的圆周角与圆心角的关系,与圆有关的位置关系,正多边形和圆,有关圆的计算,点和圆的位置关系,切线,直线和圆的位置关系,三角形的外接圆,三角形内切圆,等分圆,圆和圆的位置关系,弧长,扇形的面积,圆锥的侧面积和全面积,一.圆的基本概念:,1.圆的定义:到定点的距离等于定长的点的集合叫做圆.,2.有关概念:,(1)弦、直径(圆中最长的弦),(2)弧、优弧、劣弧、等弧,(3)弦心距,经过圆心的弦(如图中的AB)叫做直径,C,O,A,B,连接圆上任意两点的线段(如图AC)叫做弦,,与圆有关的概念,弦,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,C,O,A,B,弧,圆上任意两点间的部分叫做圆弧,简称弧以A、B为端点的弧记作 AB,读作“圆弧AB”或“弧AB”,C,O,A,B,劣弧与优弧,小于半圆的弧叫做劣弧.,大于半圆的弧叫做优弧.,(如图中的AC),(用三个字母表示,如图中的ACB),半径相等的两个圆叫做等圆。,圆心相同,半径相等的两个圆是同心圆;,半径相等的两个圆是等圆.,判断题,等圆,弓形:由弦及其所对的弧组成的图形叫弓形。,等圆:能够重合的两个圆叫做等圆,易知同圆或等圆的半径相等。,同心圆:圆心相同,半径不相等的两个圆叫做同心圆,等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。等弧应同时满足两个条件:1)两弧的长度相等,2)两弧的度数相等。,1、直径是弦,而弦不一定是直径;2、半圆是弧,而弧不一定是半圆;3、两条等弧的度数相等,长度也相等,反之,度数相等或长度相等的两条弧不一定是等弧。,注意:,圆心角:我们把顶点在圆心的角叫做圆心角.,圆周角:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.,O,圆心角与圆周角,弧、弦与圆心角的关系定理,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,在同圆或等圆中,如果圆心角、弧、弦有一组量相等,那么它们所对应的其余两个量都分别相等。,综上所述,圆周角ABC与圆心角AOC的大小关系是:,同弧所对的圆周角等于它所对的圆心角的一半.,即 ABC=AOC.,同弧 所对的圆周角相等.都等于这条弧所对的圆心角的一半.,(等弧),思考:相等的圆周角所对的弧相等吗?,在同圆或等圆中,圆周角定理:,A,B,C,D,在同圆或等圆中,相等的圆周角所对的弧相等.,则 D=A,ABCD,1.如图,在O中,BOC=50,求A的大小.,解:A=BOC=25.,如图,AB是直径,则ACB=,90 度,半圆(或直径)所对的圆周角是直角,,90度的圆周角所对的弦是直径。,如图,设O 的半径为r,A点在圆内B点在圆上C点在圆外,点A在O内,点B在O上,点C在O外,反过来,如果已知点到圆心的距离和圆的半径之间的关系,可以判断点和圆的位置关系?,OAr,OB=r,OCr,OAr,OB=r,OCr,O,设O 的半径为r,点P到圆心的距离OP=d,则有:,点P在圆内,点P在圆上,点P在圆外,dr,d=r,dr,d,直线与圆有三种位置关系,(1)相交:直线与圆有两个公共点时,叫做直线和圆相交。,这时直线叫做圆的割线。,(2)相切:直线与圆有唯一个公共点时,叫做直线和圆相切。,这时直线叫做圆的切线。,(3)相离:直线与圆没有公共点时,叫做直线和圆相离。,相离 相切 相交,二.圆的基本性质,1.圆的对称性:,(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数条对称轴.,(2)圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合,即圆具有旋转不变性.,O,A,B,C,D,E,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,CD是圆O的直径,CDAB,AP=BP,AD=DB AC=BC,你可以写出相应的命题吗?相信自己是最棒的!,垂径定理的推论,如图,在下列五个条件中:,只要具备其中两个条件,就可推出其余三个结论.,CD是直径,AM=BM,CDAB,垂径定理及推论,垂直于弦的直径平分弦,并且平分弦所对的两条弧.,平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.,平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.,弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.,垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.,平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.,平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.,一、判断是非:,(1)平分弦的直径,平分这条弦所对的弧。,(2)平分弦的直线,必定过圆心。,(3)一条直线平分弦(这条弦不是直径),那么这 条直线垂直这条弦。,(4)弦的垂直平分线一定是圆的直径。,(5)平分弧的直线,平分这条弧所对的 弦。,(6)弦垂直于直径,这条直径就被弦平分。,(7)平分弦的直径垂直于弦,3、平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?,归纳结论:不在同一条直线上的三个点确定一个圆。,B,C,经过B,C两点的圆的圆心在线段AB的垂直平分线上.,A,经过A,B,C三点的圆的圆心应该这两条垂直平分线的交点O的位置.,O,经过A,B两点的圆的圆心在线段AB的垂直平分线上.,经过三角形三个顶点可以画一个圆,并且只能画一个,一个三角形的外接圆有几个?一个圆的内接三角形有几个?,经过三角形三个顶点的圆叫做三角形的外接圆。,三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。,这个三角形叫做这个圆的内接三角形。,三角形外接圆的圆心叫做这个三角形的外心。,想一想,O,分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.,锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.,切线的判定定理,定理 经过半径的外端并且垂直于这条半径的直线是圆的切线.,老师提示:切线的判定定理是证明一条直线是否是圆的切线的根据;作过切点的半径是常用经验辅助线之一.,如图OA是O的半径,直线CD经过A点,且CDOA,CD是O的切线.,切线的性质定理,定理 圆的切线垂直于过切点的半径.,如图CD是O的切线,A是切点,OA是O的半径,CDOA.,老师提示:切线的性质定理是证明两线垂直的重要根据;作过切点的半径是常用经验辅助线之一.,切线判定定理的应用,1.已知O上有一点A,你能过点A点作出O的切线吗?,老师提示:根据“经过半径的外端,并且垂直于这条半径的直线是圆的切线”只要连接OA,过点A作OA的垂线即可.,2.已知O外有一点P,你还能过点P点作出O的切线吗?,经过圆外一点的切线,这点和切点之间的线段的长,叫做这个点到圆的切线长,从圆一点外可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。,切线长定理:,从一块三角形材料中,能否剪下一个圆,使其与各边都相切?,老师提示:假设符合条件的圆已作出,则它的圆心到三边的距离相等.因此,圆心在这个三角形三个角的平分线上,半径为圆心到三边的距离.,三角形与圆的位置关系,I,I,三角形与圆的位置关系,这圆叫做三角形的内切圆.这个三角形叫做圆的外切三角形.,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.,切点,外离:两圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做两圆外离.,外切:两圆只有一个公共点,并且除了公共点外,每个圆上的点都在另一个圆的外部时,叫两圆外切.这个公共的点叫做切点.,切点,相交:两圆有两个公共点时,叫两圆相交.,内切:两圆有一个公共点,并且除了公共点外,一个圆上的点都在另一个圆的内部时,叫两圆内切.这个公共点叫做切点.,内含:两圆无公共点,并且一个圆上的点都在另一个圆的内部时,叫两圆内含.,dR+r,d=R+r,d=R-r,dR-r,R-rdR+r,圆与圆的位置关系:,1)两圆的五种位置关系2)用两圆的圆心距d与两圆的半径R,r的数量关系来判别两圆的位置关系,解:设P的半径为R(1)若O与P外切,则 OP=5+R=8 R=3 cm,(2)若O与P内切,则 OP=R-5=8,R=13 cm所以P的半径为3cm或13cm,.,.,P,O,1 如图O的半径为5cm,点P是O外一点,OP=8cm。若以P为圆心作P与O相切,求P的半径?,例题,知识精华:,2.半径:正多边形外接圆的半径叫做这个正多边形的半径,.中心:一个正多边形外接圆的圆心叫做这个正多边形的中心,O,3.中心角:正多边形每以边所对的外接圆的圆心角叫做这个正多边形的中心角,4.边心距:中心到正多边形一边的距离叫做这个正多边形的边心距,一、知识要点概述,1、弧长公式和扇形面积公式,n的圆心角所对的弧长l和含n圆心角的扇形的面积公式不要死记硬背,可依比例关系很快地随手推来:,这样就不至于因死记硬背而出错,将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:,这一公式与三角形面积公式酷似为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底、R看成底边上的高即可,2、弓形面积,弓形面积可以看作是扇形面积和三角形面积的分解与组合,实际应用时,可根据图形直观选用下列公式:,当弓形所含的弧是劣弧时,如图(甲),,S弓形=S扇形OABSAOB;,当弓形所含的弧是优弧时,如图(乙),,当弓形所含的弧是半圆时,如图(丙),,3、圆锥的基本特征,如图:,圆锥的轴通过底面的圆心,并且垂直于底面;,圆锥的母线长都相等;,经过圆锥的轴的平面被圆锥截得的图形是等腰三角形,如图,SAB就是一个经过圆锥的轴的截面,简称为轴截面,它是一个等腰三角形,底边AB是底面圆的直径,腰是圆锥的母线,高是圆锥的高,它的顶角叫做锥角,锥角的大小反映了圆锥母线对于底面的倾斜程度,4、圆锥的侧面展开图,圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥底面圆周长 如图,若圆锥的底面半径为r,母线长为l,则它的侧面积,即S侧=rl,S全=S侧S底=rlr2=r(lr),注意:扇形的弧长就是底面圆的周长,扇形的半径就是母线长,二、重难点知识归纳,弧长公式、扇形面积公式、圆锥的侧面积和全面积,三、典型例题赏析,例1、如图,ABC是正三角形曲线CDEF叫做正三角形的渐开线,其中 的圆心依次按A、B、C循环,它们依次相连结如果AB=1,那么曲线CDEF的长是多少?,3.同圆或等圆中圆心角、弧、弦之间的关系:,(1)在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等.,(2)在圆中,如果弧相等,那么它所对的圆心角相等,所对的弦相等.,(3)在一个圆中,如果弦相等,那么它所对的弧相等,所对的圆心角相等.,COD=AOB,AB=CD,1、如图,已知O的半径OA长为5,弦AB的长8,OCAB于C,则OC的长为 _.,3,AC=BC,2:如图,圆O的弦AB8,DC2,直径CEAB于D,求半径OC的长。,垂径,直径MNAB,垂足为E,交弦CD于点F.,3、如图,P为O的弦BA延长线上一点,PAAB2,PO5,求O的半径。,辅助线,关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。,4.圆周角:,定义:顶点在圆周上,两边和圆相交的角,叫做圆周角.,性质:(1)在同一个圆中,同弧所对的圆周角等于它所对的圆心角的一半.,在同圆或等圆中,同弧或等弧所对的所有的圆周角相等.相等的圆周角所对的弧相等.,圆周角的性质(2),ADB与AEB、ACB 是同弧所对的圆周角,ADB=AEB=ACB,性质 3:半圆或直径所对的圆周角都相等,都等于900(直角).,性质4:900的圆周角所对的弦是圆的直径.,AB是O的直径,ACB=900,圆周角的性质:,15,D,3.6,作圆的直径与找90度的圆周角也是圆里常用的辅助线,2.如图,AB是O的直径,BD是 O的弦,延长BD到点C,使 DC=BD,连接AC交O与点F.(1)AB与AC的大小有什么关 系?为什么?(2)按角的大小分类,请你判断 ABC属于哪一类三角形,并说明理由.(05宜昌),1.在O中,弦AB所对的圆心角AOB=100,则弦AB所对的圆周角为_.(05年上海),500或1300,(2)点在圆上,(3)点在圆外,(1)点在圆内,如果规定点与圆心的距离为d,圆的半径为r,则d与r的大小关系为:,点在圆内,点在圆上,点在圆外,dr,dr,dr,三.与圆有关的位置关系:,2.如图,OA是O的半径,已知AB=OA,试探索当OAB的大小如何变化时点B在圆内?点B在圆上?点B在圆外?,A,B,O,2.直线和圆的位置关系:,(1)相离:,(2)相切:,(3)相交:,一条直线与一个圆没有公共点,叫做直线与这个圆相离.,一条直线与一个圆只有一个公共点,叫做直线与这个圆相切.,一条直线与一个圆有两个公共点,叫做直线与这个圆相交.,(1)当直线与圆相离时dr;,(2)当直线与圆相切时d=r;,(3)当直线与圆相交时dr.,直线与圆位置关系的识别:,d,r,设圆的半径为r,圆心到直线的距离为d,则:,切线的识别方法,1.与圆有一个公共点的直线。,2.圆心到直线的距离等于圆的半径的直线是圆的切线。,3.经过半径的外端且垂直于这条半径的直线是圆的切线。,A,l,OA是半径,OA l,直线l是O的切线.,切线的性质:,(1)圆的切线垂直于经过切点的半径.,(2)经过圆心垂直于切线的直线必经过切点.,(3)经过切点垂直于切线的直线必经过圆心.,A,l,OA l,直线l是O的切线,切点为A,切线长定理:,从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分这两条切线的夹角。,B,A,P,O,PA、PB为O的切线,PA=PB,APO=BPO,1.在RtABC中,B=90,A的平分线交BC于D,以D为圆心,DB长为半径作D.试说明:AC是D的切线.,F,如图,AB在O的直径,点D在AB的延长线上,且BD=OB,点C在O上,CAB=30.(1)CD是O的切线吗?说明你的理由;(2)AC=_,请给出合理的解释.,只要连接OC,而后证明OC垂直CD,不在同一直线上的三点确定一个圆.,三角形的外接圆与内切圆:,三角形的外心就是三角形各边垂直平分线的交点.,三角形的内心就是三角形各角平分线的交点.,等边三角形的外心与内心重合.,特别的:,内切圆半径与外接圆半径的比是1:2.,O,D,二、过三点的圆及外接圆,1.过一点的圆有_个2.过两点的圆有_个,这些圆的圆心的都在_ 上.3.过三点的圆有_个4.如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个村庄距离相等)5.锐角三角形的外心在三角形_,直角三角形的外心在三角形_ _,钝角三角形的外心在三角形_。,无数,无数,0或1,内,外,连结着两点的线段的垂直平分线,在斜边的中点上,3.如图,是某机械厂的一种零件平面图.(1)请你根据所学的知识找出该零件所在圆的圆心(要求正确画图,不写做法,保留痕迹).(2)若弦AB=80cm,AB的中点C到AB的距离是20cm,求该零件所在的半径长.,基础题:,1.既有外接圆,又内切圆的平行四边形是_.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_.3.O边长为2cm的正方形ABCD的内切圆,E、F切O 于P点,交AB、BC于E、F,则BEF的周长是_.,E,F,H,G,正方形,22cm,2cm,7如图,M与x 轴相交于点A(2,0),B(8,0),与y轴相切于点C,求圆心M的坐标,圆与圆的位置关系:,外离,外切,相交,内切,内含,典型例题:,1.如图,O的直径AB=12,以OA为直径的O1交大圆的弦AC于D,过D点作小圆的切线交OC于点E,交AB于F.,E,O1,O,D,C,B,A,F,(2)猜想DF与OC的位置关系,并说明理由.,(1)说明D是AC的中点.,(3)若DF=4,求OF的长.,2.如图,正方形ABCD的边长为2,P是线段BC上的一个动点.以AB为直径作圆O,过点P作圆O的切线交AD于点F,切点为E.,D,C,B,A,F,P,O,E,(1)求四边形CDFP的周长.,(2)设BP=x,AF=y,求y关于x的函数解析式.,Q,三.正多边形:,2.半径:正多边形外接圆的半径叫做这个正多边形的半径,.中心:一个正多边形外接圆的圆心叫做这个正多边形的中心,3.中心角:正多边形每一边所对的外接圆的圆心角叫做这个正多边形的中心角,4.边心距:中心到正多边形一边的距离叫做这个正多边形的边心距,O,3 正多边形和圆,(1).有关概念(2).常用的方法(3).正多边形的作图,E,F,C,D,.,边心距r,半径R,中心角,O,边,O,A,B,C,R,d,a,1.圆的周长和面积公式,2.弧长的计算公式,3.扇形的面积公式,或,四.圆中的有关计算:,周长C=2r,面积s=r2,4.圆柱的展开图:,r,h,S侧=2r h,S全=2r h+2 r2,5.圆锥的展开图:,底面,侧面,a,a,h,r,S侧=r a,S全=r a+r2,1、扇形AOB的半径为12cm,AOB=120,求扇形的面积和周长.,2、如图,当半径为30cm的转动轮转过120时,传送带上的物体A平移的距离为_.,A,3:如图,把RtABC的斜边放在直线 上,按顺时针方向转动一次,使它转到 的位置。若BC=1,A=300。求点A运动到A位置时,点A经过的路线长。,4.如下图,所示的三角形铁皮余料,剪下扇形制成圆锥形玩具,已知C=90度,AC=BC=4cm,使剪下的扇形边缘半径在三角形边上,弧与其他边相切,设计裁剪的方案图,直接写出扇形的半径长。,O,5、扇形的面积是它所在圆的面积的,这个扇形的圆心角的度数是_.,240,6、圆锥的母线为5cm,底面半径为3cm,则圆锥的表面积为_,24cm2,常见的基本图形及结论:,1.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D,则:,AC=BD,若大圆的弦切小圆于C,则,O,AC=BC,两圆之间的环形面积,S=AB2,D,F,E,D,F,E,4.如图,ABC各边分别切圆O于点D、E、F.,(1)DEF=900-A,(3)S ABC=(a+b+c)r,(2)BOC=900+A,5.在Rt ABC中,ACB是直角,三边分别是a、b、c,内切圆半径是r,则:,内切圆半径r=,6.如图,AB是圆O的直径,AD,BC,DC均为切线,则:,(1)DC=AD+BC,(2)DOC=900,O,B,D,C,A,E,熟练掌握以下的结论,r,r,记住:在具体计算时往往用到的是面积法和方程思想,

    注意事项

    本文(人教版-九年级-24.圆课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开