欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    大气的组成和热能课件.ppt

    • 资源ID:3787474       资源大小:4.70MB        全文页数:120页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    大气的组成和热能课件.ppt

    ,第一节 大气的组成和热能第二节 大气水分和降水第三节 大气运动和天气系统第四节 气候的形成第五节 气候变化,教学重点 认识大气的的组成、特性及其运动规律,掌握气候的形成和变化规律。教学难点 气候的形成和变化规律教学活动 实习与实验:在野外或者实验室认识大气的组成及气候变化规律。检索分析:在图书馆文献信息系统或者网络上,检索“大气”、“气候”,分题名检索和关键词检索,看有哪些图书、论文和网站与之有关,并了解该领域的新进展。主要参考书1.周淑贞主编.气象与气候学(第三版).北京:高等教育出版社,1997.2.潘守义等.现代气候学原理.北京:气象出版社,1994.3.王绍武.气候系统引论.北京:气象出版社,1994.4.张家诚著.气候与人类.郑州:河南科学技术出版社,1988.5.谭冠日.气候变化与社会经济.北京:气象出版社,1992.,地球大气是多种物质的混合物,由干洁空气、水汽、悬浮尘粒或杂质组成。在距地表85km以下的各种气体成分中,一般可分为两类。一类称为订常成分;另一类称可变成分。(一)干洁空气 通常把除水汽、液体和固体杂质外的整个混合气体称为干洁空气。简称干空气。它是地球大气得主体,主要成分是氮、氧、氩、二氧化碳等,此外还有少量氢、氖、氪、氙、臭氧等稀有气体。,一 大气的成分,第一节 大气的组成和热能,干洁空气成分及其性质,1 氮和氧 N 2约占大气容积的78。常温下,N2的化学性质不活泼,不能被植物直接利用只能通过植物的根瘤菌,部分固定于土壤中。N2对太阳辐射远紫外区0.030.13 具有选择性吸收。02占地球大气质量的23,按体积比占21。除了游离态外,氧还以硅酸盐、氧化物、水等化合物形式存在。2 二氧化碳(co2)只占大气容积的0.03,多集中在20km高度以下,主要由有机物燃烧、腐烂和生物呼吸过程产生。二氧化碳对太阳短波吸收很少,但能强烈吸收地表长波辐射,致使从地表辐射的热量不易散失到太空。,对地球有保温作用,但近年来随着工业的发展和人口的增长,全球二氧化碳含量逐年增加,改变了大气热平衡,导致地面和低层大气平均温度升高,引起严重的气候问题。3 臭氧 主要分布在1040km的高度处,极大值在2025km附近,称为臭氧层。臭氧虽在大气中的含量很少,但具有强烈吸收紫外线的能力。研究表明,人们大量使用氮肥以及作冷冻剂和除臭剂使用的碳氟化合物(氟利昂)所造成的污染是平流层的臭氧遭到破坏。臭氧层的破坏能引起一系列不利于人类的气候生物效应,因而受到广泛关注。,(二)水汽,水汽的来源和去向,(三)固、液体杂质 大气悬浮固体杂质和液体微粒,也可称为气溶胶粒子。除由水汽变成的水滴和冰晶外,主要是大气尘埃和其他杂质 大的水溶性气溶胶粒子最易使水气凝结,是成云致雨的重要条件。气溶胶粒子能吸收部分太阳辐射并散射辐射,从而改变大气透明度。它对太阳辐射的影响和增大散射辐射、大气长波逆辐射,都有可能破坏地球的辐射平衡。,二 大气的结构(一)大气质量 1 大气上界 大气按其物理性质来说是不均匀的,特别是在铅直方向变化急剧。在很高的高度上空气十分稀薄,气体分子之间的距离很大。在理论上,当压力为零或接近于零的高度为大气顶层,但这种高度不可能出现。因为在很高的高度渐渐到达星际空间,不存在完全没有空气分子的地方。,气象学家认为,只要发生在最大高度上的某种现象与地面气候有关,便可定义这个高度为大气上界。因此,过去曾把极光出现的最大高度(1200km)定为大气上界。物理学家、化学家则从大气物理、化学特征出发,认为大气上界至少高于1200km,但不超过3200km,因为在这个高度上离心力以超过重力,大气密度接近星际气体密度。所以在高层大气物理学中,常把大气上界定在3000km。,2 大气质量 大气高度虽然不易确定,大气质量却可以从理论上求得。假定大气是均质的,则大气高度约为8000m,整个大气柱的质量为 m0p0 H 1.1251038105 1013.3g/cm2 p0为标准情况下(T00,气压为1013.25hPa)大气密度。,(二)大气压力 1 气压 定义从观测高度到大气上界上单位面积上(横截面积1cm2)铅直空气柱的重量为大气压强,简称气压。地面的气压值在9801040hPa之间变动,平均为1013hPa。气压有日变化和年变化,还有非周期变化。气压非周期变化常与大气环流和和天气系统有关,且变化幅度大。,气压日变化,一昼夜有两个最高值(910时,2122时)和两个最低值(34时,1516时)。热带的日变化比温带明显。赤道地区气压年变化不大,高纬地区较大;大陆和海洋也有显著差别,大陆冬季气压高,夏季最低,而海洋相反。2 气压的垂直分布 气压大小取决于所在水平面的大气质量,随高度的上升,大气柱质量减少,所以气压随高度升高而降低。其一般情况如图所示:,气压随高度的实际变化与气温和气压条件有关。如表所示 再气压相同条件下,气柱温度愈高,单位气压高度差 愈大,气压垂直梯度愈小;在相同气温下,气压愈高单 位气压高度差愈大,气压垂直梯度愈大。(三)大气分层 按照分子组成,大气可分为两个大大层次,即均质层和非均质层。均质层为从地表至85km高度的大气层,除水汽有较大变动外,其组成较均一。85km高度,以上为非均质层,其中又可分为氮层(85200km)、原子氧层(2001100km)、氦层(11003200km)和氢层(32009600km)按大气化学核物理性质,非均质层可分为光化层和离子层。光化层具有分子、原子和自由基组成的化学物质,其中包括约在20km高度处03浓度最大处的臭氧层。离子层包含大量离子。又反射无线电波能力。从下而上,又分为D、E、F1、F2和G层。在气象学中按照温度和运动情况,将大气圈分为五层,大气的垂直分层,对流层气温变化,(四)标准大气 人们根据高空探测数据和理论,规定了一种特性随高度平均分布的大气模式,称为“标准大气”或“参考大气”。标准大气模式假定空气是干燥的,在86km以下是均匀混合物,平均摩尔质量为28.964kg/mol,且处于静力学平衡和水平成层分布。在给定温度,高度廓线及边界条件后,通过对静力学方程和状态方程求积分,就得到压力和密度值。大气的热能 地球气候系统的能源主要是太阳辐射,它从根本决定地球、大气的热状况,从而支配其他的能量传输过程。地球气候系统内部也进行着辐射能量交换。因此,需要研究太阳、地球及大气的辐射能量交换和其他地气系统的辐射平衡。,(一)太阳辐射 太阳是离地球最近的一个恒星,其表面温度约为6000K,内部温度更高,所以太阳不停地向外辐射巨大的能量。太阳辐射能主要是波长在0.40.76 m的可见光,约为总能量的50;其次是波长大于0.76 m的红外辐射,约占总辐射能的43;波长小于0.4 m的紫外辐射约占7。相对于地球来说,太阳辐射的波长较短,故称太阳辐射为短波辐射。表示太阳辐射能强弱的物理量,即单位时间内垂直投射在单位面积上的太阳辐射能,称为太阳辐射强度。在日地平均距离(1.496108)上,大气顶界垂直于太阳光线的单位面积上每分钟接受的太阳辐射,称为太阳常数。,大气上界太阳辐射能量曲线及到达地表的典型能量曲线,经大气削弱后到达地面的太阳辐射有两部分:一是直接辐射;二是经大气散射后到达地面的部分,称为散射辐射。二者之和就是太阳辐射总量,称为总辐射,总辐射的纬度分布,一般是纬度愈高,总辐射愈小;纬度愈低,总辐射愈大。因为赤道附近多云,总辐射最大值并不出现在赤道,而是出现在200N附近。到达地面的总辐射一部分被地面吸收转变成热能,一部分被反射。反射部分占辐射量的百分比,称为反射率。反射率随地面性质和状态不同二有很大差别。,不同性质地面对太阳的反射率,(二)大气能量及其保温效应 大气本身对太阳辐射直接吸收很少,而水、陆植被等下垫面却能吸收太阳辐射,并经潜热和感热转化供给大气。大气获得能量的具体结构为:1 对太阳辐射的直接吸收 大气中吸收太阳辐射的物质主要是臭氧、水汽和液态水。,地球大气对太阳辐射的吸收,2 对地面辐射的吸收 地表吸收了到达大气上界太阳辐射能的50,变成热能,温度升高,而后以大于3 m的长波(红外)向外辐射。这种辐射能量的7595被大气吸收,只有少部分波长为8.512 m的辐射能通过“大气窗”逸回宇宙空间。3 潜热输送 海面和陆面的水分蒸发使地面热量得以输送到大气层中。一方面水汽凝结成雨滴或雪时,放出潜热给空气;另一方面雨滴或雪降到地面不久又被蒸发,这个过程交替进行。全球表面年平均潜热输送约为2760MJ/m2,占辐射平衡的84,可见,地气间能量交换主要是通过潜热输送完成的。,4 感热输送 大气获得热能后依据本身温度向外辐射,称为大气辐射。其中一部分外逸到宇宙空间,一部分向下投向地面,即为大气逆辐射。大气逆辐射的存在使地面实际损失略少于长波辐射放出的能量,地面得以保持一定的温暖程度。这种保温作用,通常称为“温室效应”据计算,如果没有大气,地面平均温度将是18oC,而不是现在的150C。(三)地气系统的辐射平衡,全球辐射平衡图解,辐射平衡有年变化和日变化。在一日内白天收入的太阳辐射超过支出的长波辐射,辐射平衡为正值,夜间为负值。正转负和负转正的时刻分别在日没前与日出后1小时。在一年内,北半球夏季辐射平衡因太阳辐射增多而加大;冬季则相反,甚至出现负值。纬度愈高,辐射平衡保持正值的月份愈少。,不同纬度辐射差额的变化,第二节 大气水分和降水,一 大气湿度(一)湿度的概念和表示方法 大气从海洋、湖泊、河流以及潮湿土壤的蒸发或植物的蒸腾作用中获得水分。水分进入大气后,通过分子扩散和气流的的传递而散布于大气中,使之具有不同的潮湿度。常用多个湿度参量表示水气含量。1 水汽压和饱和水汽压 大气压力是大气中各中气体压力的总和。大气中水汽所产生的那部分压力叫水汽压(e)地面的水汽压随纬度的升高而减小。赤道平均26hPa,350N约为13hPa,650N约为4hPa。极地附近约为2hPa。,水汽压随高度的变化而变化 水汽压随高度变化经验公式:ez=e010 bz 式中,ez为高度z(m)的水汽压;e0为地面的水汽压;b为水汽压随高度变化的常数。空气中水汽含量与温度关系密切。温度一定时,单位体积空气容纳的水汽量有一定的限度,达到这个限度,空气呈饱和状态,称为饱和空气。饱和空气的水汽压,称为饱和水汽压(E),饱和水汽压随温度升高而增大。,不同温度条件下水面上的饱和水汽压/hPa,2 绝对湿度和相对湿度 单位容积空气所含的水气质量通常以g/cm3表示,称为绝对湿度(a)或水汽密度。绝对湿度不能直接测定,但可间接算出。它与水汽压有关系:a289e/T(g/m3)式中,e为水汽压(mm);T为绝对温度。大气的实际水汽压e与同温度饱和水汽压E之比,称为相对湿度(f),用百分数表示。fe/T100 由于E随温度而变,所以相对湿度取决于e和T,其中T往往起主导作用。当e一定时,温度降低则相对湿度增大;温度升高相对湿度减小。夜间多云、雾、霜、露,天气转冷时容易产生云等都是相对湿度增大的结果,3 露点温度 一定质量的湿空气,若气压保持不变,而令其冷却,则饱和水汽压E随温度降低而减小。当 Ee时,空气达到饱和。湿空气等压降温达到饱和时的温度就是露点温度Td,简称露点。(二)湿度的变化与分布 相对湿度能够直接反映空气距饱和的程度,在气候资料分析中应用广泛。相对湿度日变化通常与气温日变化相反。,相对湿度分布随距海远近与纬度高低而有不同。例如,我国东南沿海相对湿度年平均为80,内蒙古西部只有40。,各纬度上水汽压与相对湿度的平均值,二 蒸发与凝结 蒸发面上出现蒸发还是凝结取决于实际水汽压于饱和水汽压的关系。当eE,出现蒸发;eE,则出现凝结。(一)蒸发及其影响因素 1 影响蒸发的因素 其影响因素主要包括蒸发面的温度、性质、性状、空气湿度、风等。2 蒸发量 实际工作中,一般以水层厚度(mm)表示蒸发速度,称为蒸发量。蒸发量的变化与气温变化一致,一日内,午后蒸发量最大;日出前蒸发量最小。一年内,夏季蒸发量大,冬季小。蒸发量的空间变化受气温、海陆分布、降水量等因素的影响。,北半球大陆各纬度平均蒸发量(二)凝结和凝结条件 凝结是发生在f100(eE)过饱和情况下的与蒸发相反的过程。凝结现象在地面和大气中都能发生,大气中的水汽发生凝结,需具备一定的条件,既要使水汽达到饱和或过饱和,还需有凝结核。三 水汽的凝结现象(一)地表面的凝结现象 1 霜与露 日没后,地面及近地面层空气冷却,温度降低。当气温降到露点一下时,水汽即凝附于地面或地面物体上。如温度在00C以上,水汽凝结为液态,称为露;温度在00C以下,水汽凝结为固态,称为霜。霜常见于冬季,露见于其他季节,以夏季为最多。2 雾淞和雨淞 雾淞是一种白色固体凝结物,由过冷雾滴附着于地面物体或树枝迅速冻结而成,俗称“树挂”。多出现于寒冷而湿度高的天气条件下。,雨淞是形成在地面或地物的迎风面上的,透明的或毛玻璃状的紧密冰层,俗称“冰棱”。多半在温度为 0 60C时,由过冷却雨、毛毛雨接触物体表面形成;或是经过长期严寒后,雨滴降落在物体表面冻结而成。(二)大气中的凝结现象 1 雾 雾是漂浮在近地面层的乳白色微小水滴或冰晶。根据不同成因,雾可分为辐射雾、平流雾、蒸汽雾、上坡雾和锋面雾。2 云 云是高空水气凝结现象。空气对流、锋面抬升、地形抬升等作用使空气上升到凝结高度,就会形成云。云有各式各样的外貌特征。,根据云的形状、云底高度及形成云的上升运动的特点可将云分为以下几类。云的分类 1 积状云。包括淡积云、浓积云和积雨云出现时常呈孤立分散状态,是由于空气对流上升,体积膨胀绝热冷却,使水汽发生凝结而形成的。,积状云的形成,2 层状云。层状云是均匀幕状云层,通常具有较大水平范围。覆盖数千甚至上万平方千米的地区。层状云是由空气斜上升运动形成的。,系统性层状云的形成,3 波状云 波状云是表面呈现波状起伏或鱼鳞状的云层,包括卷积云、高积云、层积云和层云。通常因空气密度不同、运动速度不同等的两个气层界面上产生波动而形成的。,波状云,四 大气降水(一)降水的形成 从云层中降落到地面的液态水或固态水,称为降水。降水是云中水滴或冰晶增大的结果。从雨滴到形成降水需具备两个基本条件:一是雨滴下降速度超过气流上升速度;二是雨滴从云中降落到地面前不被完全蒸发。降水的形成,必须经历云滴增大为雨滴、雪花及其他降水物的过程。云滴增长主要有两个过程:,1 云滴的凝结(凝华)增长 在云的发展阶段,云体上升绝热冷却,或不断有水汽输入,使云滴周围的实际水汽压大于其饱和水汽压云滴就会因水汽凝结或凝华而逐渐增大。当水滴和冰晶共存时在温度相同条件下,冰面水汽压小于水面水汽压,水滴将不断蒸发变小,而冰晶则不断凝华增大这种过程称为冰晶效应。,2 云滴的冲并增长云滴大小不同,相应具有不同的运动速度。云滴下降时,个体大的云滴落得快,个 体小的慢,于是大云滴“追上”小云滴,碰撞 合并成为更大的云滴。,冰晶效应示意图,冲并增长示意图,(二)降水的类型 根据降水形成原因(主要是气流上升特点),可分为四个基本类型:1 对流雨 暖季空气湿度较大,近地面气层强烈受热,引起对流而形成的降水称为对流雨。赤道全年以对流雨为主。我国西南夏季多对流雨。2 地形雨 暖湿空气前进途中遇到较高山地阻挡被迫抬升,绝热冷却,在达到凝结高度时便产生降水。因此,山的迎风坡常成为多雨中心;背风坡因水汽早已凝结降落,且下沉增温,将发生焚风效应,降水很少,形成雨影区。,3 锋面雨 两种物理性质不同的气团相遇,暖湿空气沿交界面上升,绝热冷却,达到凝结高度便产生云雨。温带地区锋面雨占主要地位。4 台风雨 台风是产生在热带海洋上的一种空气漩涡。台风中有大量暖空气上升,可产生强度极大的降水。(三)降水的时间变化 1 降水强度 单位时间内的降水量,称为降水强度。气象部门为确定一定时间内降水的数量特征,并用以预报未来降水数量变化趋势,将降水强度划分为若干等级:,降水强度划分标准,2.降水的日变化 一天内的降水变化,在很大程度受地方条件限制,可大致分为两个类型:(1)大陆型 特点是一天有两个最大值,分别出现在午后和清晨;两个最小值,分别出现在夜间和午前。(2)海洋型 特点是一天只有一个最大值,出现在清晨,最小值出现在午后。3.降水的季节变化 降水季节变化因纬度,海陆位置、大气环流等因素影响而不同。全球降水的年类型大致可分为以下几类:(1)赤道型:全年多雨,其中有两个高值和两个低值时期。春、秋分之后降水量最多;冬、夏至之后,降水量出现低值。这种类型分布在南北纬100以内的地区。,(2)热带型:位于赤道型南北两侧。由于太阳在天顶的时间不像在赤道上间隔相等,随纬度的增加,两段最多降水量时间逐渐接近,至回归线附近合并为一个。(3)副热带型:副热带全年降水只有一个最高值,一个最低值。大陆东岸降水量集中于夏季(季风型),大陆西岸则冬季多雨(地中海型)。(4)温带及高纬型:内陆及东海岸以夏季对流雨为主,西海岸则以秋冬气旋雨为主。(四)降水量的地理分布 降水量空间分布受纬度、海陆位置、大气环流、天气系统、地形等多种因素制约,降水的分布存在纬度带状分布的特点。全球可划分为四个降水带:,世界年平均降水量分布,1 赤道多雨带 赤道及其两侧是全球降水量最多的地带。年降水量至少1500mm,一般为20003000mm 2 南北纬150300少雨带 这一纬度带受副热带高压控制,以下沉气流为主。是全球降水稀少带。大陆西岸和内部一般不足500mm,不少地方只有100300mm。3 中纬多雨带 年降水量一般为500100mm。4高纬少雨带 本带因纬度高,全年气温低,蒸发微弱,大气中所含水汽量较少,故年降水量一般不超过300mm。,第三节 大气运动和天气系统,一 大气的水平运动 空气运动是地球大气最重要的物理过程。由于空气运动,不同地区、不同高度之间的热量、动量、水分等得以交换,不同性质的空气得以交流,从而产生各种天气现象和天气变化。(一)作用于空气的力 空气的水平运动是由所受的力决定的。作用于空气的力有:1 水平气压梯度力 气压分布不均匀产生气压梯度,使空气具有由高压区流向低压区的趋势,在讨论空气运动时,通常把存在水平气压梯度时单位质量空气所受的力,称为水平气压梯度力G,其表达式为 G1/P/n-1/P/n式中,负号表示气压梯度力的方向从高压指向低压;为空气密度;P/n为水平气压梯度。2 地转偏向力 由于地球转动使地球上运动方向发生偏转的力,称为地转偏向力。包括水平和垂直两个分量 对于垂直分量,因为大气存在静力平衡对大气运动无关紧要。因此,只讨论水平分量。单位质量空气的水平地转偏向力为 A2sin式中,为地球旋转角速度;为地理纬度;为风速。,由方程可知赤道上地转偏向力为零;两极地转偏向力最大,为2 地转偏向力随纬度分布示意图,3 惯性离心力 当空气作曲线运动时,受惯性离心力c作用。惯性离心力方向与空气运动方向垂直,并由曲线路径的曲率中心指向外缘。其表达式为:cv2/r v为空气运动的线速度,r为曲线的曲率半径。,惯性离心力图示,4 摩擦力 运动状态不同的气层之间、空气和地面之间都会产生相互作用阻碍气流的运动,这种相互作用称为摩擦力。摩擦力总是阻碍气流的运动。摩擦力的大小随高度不同而变化。近地面层(地面至3050m)最大,高度愈高,作用愈若,到12km以上其影响可以忽略。此高度以上称为自由大气,以下的气层称为摩擦层或行星边界层。(二)自由大气的运动 自由大气中,空气运动规律比摩擦层简单。空气作直线运动时,只需考虑气压梯度力和地转偏向力;空气作曲线运动时,还需考虑惯性离心力。1 地转风,地转风指自由大气中空气作匀速直线运动。地转风方向与气压场之间存在一定的关系,即白贝罗风压定律:当不考虑摩擦时,地转偏向力与气压梯度力平衡,水平面上地转风表达式为:vg1/2sinP/n,地转风与气压场的关系,地转风是严格的平衡运动,等压线必须是直线。2 梯度风 自由大气中,空气作曲线运动时,地转偏向力、气压梯度力、惯性离心力达到平衡时的风称为梯度风。当空气作直线运动时,惯性离心力为零,梯度风转为地转风,因此地转风是梯度风的特例。梯度风有气旋性弯曲和反气旋性弯曲两类。所以存在气旋区内梯度风和反气旋区内的梯度风。,反气旋内存在气压梯度极限值,此值与曲率半径r有关。如果r很小或气压梯度力很大,地转偏向力不可能与方向相反的气压梯度力和离心力平衡,就不能维持梯度风。所以反气旋中心区不可能存在很大的气压梯度。气旋区内则不存在极限值。(三)风随高度的变化 1 地转风随高度的变化热成风 水平温度分布不均导致气压梯度随高度发生变化,风相应的随高度发生变化。有水平温度梯度引起的上下层风的向量差,称为热成风,用VT表示。,热成风的形成与方向,热成风的风速与水平温度及气层厚度有关,其表达式为:VTgZ/2sinTm/N,2 摩擦层中风随高度变化 摩擦层中,风随高度的变化受摩擦力和气压梯度随高度变化的影响。在气压梯度不随高度变化的情况下,离地面愈远,风速愈大,风向与等压线的交角愈小。把北半球摩擦层中不同高度上风的向量投影到同一水平面上,可得到一条风向风速随高度变化的螺旋曲线,称为埃克曼螺线。,北半球埃克曼风速螺旋曲线,由埃克曼螺线可以看到,当高度很小时,风速随高度增加很快,但风向改变不大;随高度增大风速增加缓慢,风向却显著向右偏转,最终趋于地转风。在离地面10m以下的气层中摩擦力随高度增加迅速减小,所以要求测风仪离地面1012m以上。根据风速大小可将风力划分为12级。如表所示:,二 大气环流 定义:是指大范围内具有一定稳定性的各种气流运行的综合现象。水平尺度可涉及某个地区、半球甚至全球;垂直尺度有对流层、平流层、中间层或整个大气圈的大气环流;时间尺度有一日至数日、月、季、半年、一年甚至多年的平均大气环流。其主要表现形式包括全球行星风系、三圈环流、定常分布的平均槽脊和高空急流、西风带中的大型扰动、季风环流。(一)全球环流 1 全球气压带 如果地表性质均匀,那么地表气压完全取决于纬度。在热力和动力因子作用下,气压的水平分布呈现规则的气压带,且高低气压带交互排列。,原因:这种分布规律主要由于地表温度随纬度分布不均匀造成的。赤道附近,终年受热,温度高,空气膨胀上升,到高空向外流散,导致气柱质量减小,低空形成低气压,称赤道低压带;两极地区气温低,空气冷却收缩下沉,积聚在低空,而高空伴有空气辐和合,导致气柱质量增加,在低空形成高压区,称极地高压带。从赤道上空流向两极地区的气流在地转偏向力的作用下,流向逐渐趋于纬线方向,阻滞来自赤道上空的气流流向高纬,空气质量增加,形成高压带,称副热带高压带。副热带高压带和极地低压带之间有一个相对的低压带称为副极地低压带。气压带每年随等温线移动几个纬度,对季节性的气候变化有影响。,2 行星风系 定义:不考虑海陆和地形的影响,地面盛行风的全球形式称为行星风系。依据气压系统分布状况和风压关系,可以判断盛行风情况。,副热带高压带,1,2,副极地低压带,3,5,上升,下沉,下沉,4,6,上升,3 经向三圈环流 假设地球不自转,且表面均匀,由于赤道和两极受热不均,赤道上空的空气流向极地,而低层气流自极地流向赤道,这样在赤道和极地之间会形成一个南北闭合的环流。,高压高空,低压地面,高空低压,地面高压,但地球不停自转,空气一旦开始运动,地转偏向力便随之发生作用。在地转偏向力的作用下,南北半球分别形成三圈环流。,4 高空西风带的波动和急流,季风环流 定义:大陆和海洋间的广大地区,以一年为周期、随着季节变化而方向相反的风系,称为风系。季风是海陆间季风环流的简称,它是由大尺度的海洋和陆地间热力差异形成的大范围热力环流。夏季由海洋吹向大陆的风为夏季风;冬季由大陆吹向海洋的风为冬季风。一般夏季风由暖湿热带海洋气团或赤道海洋气团构成;冬季风则由干冷的极地大陆气团构成。分布:主要季风区位于350N250N,300W1700E之间,而南亚和中国东南部季风特别发达。南亚和东亚是世界最著名的季风区,其环流特征主要表现为冬季盛行东北季风,夏季盛行西南季风,热带雨林气候,热带草原气候,热带沙漠气候,地中海气候,温带海洋性气候,亚寒带针叶林气候,极地气候,海陆热力性质差异,季风环流,热带季风,亚热带季风,温带季风,温大陆,季节移动,一月份,七月份,高,低,低,高,(三)局地环流 行星风系与季风都是大范围气压场控制下的大气环流。由局部环境如地形起伏、地表受热不均等引起的小范围气流,称为局地环流。包括海陆风,山谷风,焚风等地方性风。1 海陆风 在滨海地区,白天风从海上吹向陆地;晚间风从陆地吹向海洋,这就是海陆风环流。,2 山谷风 当大范围水平气压场较弱时,山区白天地面风从谷地吹向山坡;晚间地面风从山坡吹向谷地,这就是山谷风环流。形成机制:白天,山坡空气比同高度的自由大气增热强烈,暖空气沿坡上升,成为谷风;夜间山坡辐射冷却,迅速降温,而谷地中同高度空气冷却较慢,因而形成与白天相反的热力环流,下层风由山坡吹向山谷,称为山风。,谷风,山风,3 焚风 气流受山地阻挡被迫抬升,迎风坡空气上升冷却,起初按干绝热递减率降温(10C/100m),当空气达到饱和状态时,水汽凝结,气温按湿绝热递减率降低(0.50.60C/100m),大部分水汽在迎风坡降落。气流越过山后顺坡下沉,基本按干绝热递减率增温,以致背风坡气温比同高度迎风坡气温高,从而形成相对干热的风,称为焚风。,焚风,三 主要天气系统 大气中引起天气变化的各种尺度的运动系统,称天气系统。一般多指温压场和风场中的大气长波、气旋、反气旋、锋面、台风、龙卷风等。根据水平尺度和生命史,天气系统可分为:,(一)气团和锋 1 气团 定义:气团指在广大区域内水平方向上温度、湿度、铅直稳定度等物理属性较均匀的大块空气团。其水平范围由数千米到数千千米,垂直范围由数千米到十余千米甚至伸展到对流层顶。气团按其热力性质可分为冷气团和暖气团。冷、暖气团是根据气团温度与所经下垫面的温度对比来定义的。气团向比它暖的下垫面移动,称为冷气团;向比它冷的下垫面移动,称为暖气团。按气团的源地的地理位置和 下垫面性质可分为:,气团的地理位置,2 锋及其分类 温度或密度差异很大的两个气团相遇形成的狭窄过渡区域,称为锋。,锋的空间结构,由于锋附近的辐和气流及冷暖空气的相对运动,使锋面上的暖空气不断上升,所以锋面上多云雨天气。,冷暖气团相遇形成锋,根据锋移动过程中冷暖气团的替代情况,锋可分为冷锋、暖锋、准静止锋、囚锢锋四种类型。冷锋是指冷气团主动向暖气团移动的锋;暖锋则是暖气团主动向冷气团移动的锋;准静止锋是指很少移动或移动速度非常缓慢的锋;囚锢锋是指锋面相遇、合并后的锋。,冷锋,暖锋,囚锢锋,(二)气旋和反气旋 1 气旋 气旋是由锋面上或不同密度空气分界面上发生波动形成 的,占有三度空间、中心气压比四周低的水平空气涡旋。北半球气旋空气按反时针方向自外围向中心运动。2 反气旋 反气旋是占有三度空间的,中心气压比四周高的大型空气涡旋。,第四节 气候的形成,一 气候和天气系统(一)气候的概念 1 定义:气候是指某一地区多年间大气的一般状态及其变化特征。它既反映平均情况,也反映极端情况,是各种天气现象的多年综合。气候和天气是两个不同的概念。从时间尺度上看,气候是时间尺度很长的天气过程,天气则是瞬时或短时间内的大气状态。2 当代气候对于当前气候,规定用刚刚过去的三个十年,共三十年的平均值作为准平均每过十年更新一次。目前应用19712000年准平均。,(二)气候系统 一般说来,完整的气候系统由五个部分组成。1 大气圈 是气候系统的主体,也是气候系统最易变化和最敏感的部分。2 海洋 海洋约占地球表面积的70.8仅100m深的表层海水就占整个气候系统总热量的95.6。因此,可以认为海洋是气候系统的热量储存库。,3 冰雪圈 冰原体积和范围的变化是气候变化的指示器,对气候长期变化产生反馈,在地球热平衡中起着重要的作用。4 陆面(岩石圈)陆地位置、高度和地形发生变化的时间尺度,在气候系统中是最长的,在季节、年际以至十年尺度的气候变化中可以忽略。但是土壤作为大气颗粒的主要来源之一,在气候变化中有重要作用。5 生物圈,二 气候的形成 气候的形成受很多因素的影响,其中主要包括:(一)辐射因子 太阳辐射是气候系统的能源,又是一切大气物理过程和现象形成的基本动力,在气候形成中起着主导作用。不同地区的气候差异及气候季节交替,主要是由太阳辐射能在地球表面分布不均匀及其变化引起的。而太阳辐射的时空分布受纬度制约,故气候形成的辐射因子是一种纬度因素。1 地球上的天文气候 地球表面因辐射平衡温度随纬度和季节的分布形成的简单气候模式,称为天文气候。天文气候能够反映地球气候的基本轮廓。研究天文气候既可以使问题简化,又能突出太阳辐射对气候形成的实质性作用。,太阳天文辐射量的大小取决与日地距离、太阳高度和日照时间。在这些因子的作用下,同一纬度的天文辐射,日总量、季总量、年总量都相同。即太阳辐射总量具有与纬线圈平行呈带状分布的特点,这是形成气候带的主要原因。根据太阳天文辐射空间分布,通常可把地球上划分为7各纬度气候带即 赤道带、热带、副热带、温带、副寒带、寒带和极地带。,地球气候带,(二)气候形成的环流因子 地表太阳辐射能量不均引起的大气环流是热量和水分的转移者,也是形成气团的基本原因。它促使不同性质气团发生移动,而气团的水平交换是不同地区气候形成及其变化的重要方式。因此,在不同纬度的环流形势下形成的气候类型也不同。1 大气环流与热量输送和水分循环 350S350N之间辐射热量收入大于支出,说明热带和副热带有热量盈余。高纬度地区有热量亏损。但热带并未持续增温,极地也没有持续降温,表明必然存在热量有低纬向高纬的输送。,上表表明大气环流在缓和赤道与极地温差上起着巨大作用。大气环流还调节海陆间的热量。冬半年大陆是冷源,海洋是热 源,在盛行海洋气团的沿海地区,热量由海洋输送到大陆,故迎 风海岸气温比同纬度内陆高;而在大陆冷风影响下,近陆海面气 温比同纬度海洋表面气温低。夏半年大陆是热源,海洋是冷源,热量由大陆输送到海洋,但输送的热量远比冬季海洋向大陆的 小。这种海陆热量交换是造成同纬度大陆东岸和大陆内部气温显 著差异的重要原因。,冷风影响下,近陆海面气温比同纬度海洋表面气温低;夏半年大陆是热源,海洋是冷源,热量由大陆输送到海洋,但输送量比冬季海洋向大陆输送的少。在副热带,蒸发量大于降水量,在赤道和中高纬度,降水量大于蒸发量,因此要达到水分平衡必须经过大气运动,把水汽从盈余地区输送到亏损地区。大气环流具有明显的非周期性变化。纬圈环流减弱时,南北水平温度梯度加大,冷暖气团活跃,有利于锋面、气旋产生,多雨天气相应增多,某些地区将出现气候异常现象;反之,纬圈环流加强时,南北水平温度梯度减小,冷暖气团不活跃,某些地方往往受单一气团控制,不利于锋面、气旋的形成与发展,降水天气显著减少,因而出现特别热和干的气候异常现象。,2 大气环流和海温异常 海温变化存在明显的年季振荡,最著名的事例,就是厄而尼诺现象。指赤道东太平洋海面水温异常增暖现象。,圖 1998年1月當厄爾尼諾達成熟期時,熱帶太平洋暖水區(紅色部份)從秘魯西岸向西伸延至太平洋中部。圖中深紅色部份水溫比正常高4至5度。(資料來源:美國國家海洋及大氣管理局),正常情况下赤道太平洋形成一个纬圈环流 如图,厄尔尼诺现象发生时,由于海温的异常增高,导致海洋上空大气层气温升高,破坏了大气环流原来正常的热量、水汽等分布的动态平衡。这一海气变化往往伴随着出现全球范围的灾害性天气:该冷不冷、该热不热,该天晴的地方洪涝成灾,该下雨的地方却烈日炎炎焦土遍地。一般来说,当厄尔尼诺现象出现时,赤道太平洋中东部地区降雨量会大大增加,造成洪涝灾害,而澳大利亚和印度尼西亚等太平洋西部地区则干旱无雨。,(三)气候形成的地理因子 地理因子通过对辐射因子和环流因子的影响作用于气候。任何气候都与一定的地区相联系,即气候是结合所在的地理环境出现的。地理环境使得地球气候具有纬度地带性,由具有非地带性特征。因此,分析气候成因必须考虑地理环境。1 海陆分布对气候的影响 海陆不同物理性质导致同纬度、同季节海洋和大陆的增温和冷却显著不同。海上和陆上气温也有明显差异,不仅破坏温度的纬度地带性分布,而且还影响到气压分布、大气运动方向即水平分布,使同一纬度带出现海洋性气候和大陆性气候的差异。大陆性气候与海洋性气候的特征可概括为:,大陆性与海洋性气候比较,2 洋流对气候的影响 洋流是大洋中任一持续不断并主要呈水平流动的海水,它可以从低纬度向高纬度传输热量,又能从高纬地区向低纬输送海冰和冷水。据卫星观测,在200N洋流输送的热量占地气系统总热量传输的74,而在30350N洋流传输的热量是总传输热量的47,因此,洋流对气候的形成具有重要作用。3 地形对气候的影响 海拔高度、地表形态、方位(坡向和坡角)等影响水热条件的再分配,从而对气候产生影响。,三 气候带和气候型(一)低纬度气候 低纬度的气候主要受赤道气团和热带气团所控制。全年地-气系统的辐射差额是入超的,因此气温全年皆高,最冷月平均气温在1518以上。影响气候的主要环流系统有赤道气流辐合带、沃克环流、信风、赤道西风、热带气旋和副热带高压,有的年份会出现厄尔尼诺现象。由于上述环流系统的季节移动,导致 降水量的季节变化,在厄尔尼诺现象出现时,引起降水分布的明显异常,全年可能蒸散量在1300mm以上。本带可分为五个气候型:,1 赤道多雨气候 位于赤道及其两侧,大约向南、向北伸展到510左右,各地宽窄不一,主要分布在非洲扎伊尔河流域、南美亚马逊河流域和亚洲与大洋洲间的从苏门答腊岛到伊里安岛一带。典型台站:秘鲁的伊基托斯。这里全年正午太阳高度角都很大,因此长夏无冬,各月平均气温在2528,年平均气温在26左右。绝对最高气温很少超过38,绝对最低气温也极少在18以下;气温年较差一般小于3,日较差可达612,全年多雨,无干季,年水量在2000mm以上,最少月在60mm以上。,全年皆在赤道气团控制下,风力微弱,以辐合上升气流为主,多雷阵雨,天气变化单调,降水量的年际变化很大。这与赤道辐合带位置的变动有关,例如新加坡平均年降水量为2282mm,最湿年(4031mm)相当于最干年(831mm)的近5倍。由于全年高温多雨,各月平均降水量皆大于可能蒸散量,土壤储水量皆达最大值(300mm),适于赤道雨林生长。,2热带海洋性气候 出现在南北纬1025信风带大陆东岸及热带海洋中的若干岛屿上,如加勒比海沿岸及诸岛、巴西高原东侧沿海、马达加斯加东岸、夏威夷群岛等。典型台站:哈瓦那。这里正当迎风海岸,全年盛行热带海洋气团(Tm),气候具有海洋性,最热月平均气温在28上下,最冷月平均气温在1825间,气温年较差、日较差皆小,如哈瓦拉年较差仅5.6,年降水量在1000mm以上,一般以510月较集中,无明显干季,除对流雨、热带气旋雨外,沿海迎风坡还多地形雨。,3 热带干湿季气候 出现在纬度515左右,也有伸达25左右的,主要分布在上述纬度的中美、南美和非洲。4 热带季风气候 出现在纬度10到回归线附近的亚洲大陆东南部如我国台湾南部、雷州半岛和海南岛;中南半岛;印度半岛大部;菲律宾;澳大利亚北部沿海等地。5 热带干旱与半干旱气候 出现在副热带及信风带的大陆中心和大陆西岸。在南、北半球各约以回归线为中心向南北伸展,平均位置约在纬度1525间。,(二)中纬度气候 1 副热带干旱与半干旱气候 该气候型位于热带,在热带干旱气候向高纬度的一 侧,约在南北纬2535的大陆西岸和内陆地区。它也是在副热带高压下沉气流和信风带背岸风的作用下形成的。2 副热带季风气候 位于副热带亚欧大陆东岸,约以30N为中心,向南北各伸展5左右。它是热带海洋气团与极地大陆气团交绥角逐的地带,夏秋间又受热带气旋活动的影响。,3 副热带湿润气候 位于南北美洲、非洲和澳大利亚大陆副热带东岸。由于所处大陆面积小,未形成季风气候,这里冬夏温差比季风区小,一年中降水分配比季风区均匀。4 副热带夏干气候(地中海气候)该带位于副热带大陆西岸,纬度3040之间的地带,包括地中海沿岸、美国加利福尼亚州沿岸、南非和澳大利亚南端。这里受副热带高压季节移动的影响,在夏季

    注意事项

    本文(大气的组成和热能课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开