碳纳米管的制备课件.ppt
无机碳化学,无机碳化学,石墨转化法 C(石墨)C(金刚石)rHm1.8280.084 kJmol1 rGm2.796 kJmol1 rSm3.250.02 kJmol1 常温常压下石墨转化为金刚石是非自发的,但根据rGmrHmTrSm可见,在高温和高压(由疏松到致密)下可能实现这种转化。其温度和压力条件因催化剂的种类不同而不同。,金刚石的合成 金刚石合成已有四十多年的历史。已报道的合成方法大致可分为两类:,石墨转化法可分为静态超高压高温法和动态法两种。,静态超高压高温法 用高压设备压缩传压介质产生310 GPa的超高压,并利用电流通过发热体,将合成腔加热到l0002000高温。其优点是能较长时间保持稳定的高温高压条件,易于控制。该法可得到磨料级金刚石,但设备技术要求高。,动态法 利用动态波促使石墨直接转变成金刚石。动态冲击波可由爆炸、强放电和高速碰撞等瞬时产生,在被冲击介质中可同时产生高温高压,使石墨转化为金刚石。该法作用时间短(仅几微秒),压力及温度不能分别加以控制,但装置相对简单,单次装料多,因而产量高。产品为微粉金刚石,可通过烧结成大颗粒多晶体,但质量较差。,气相合成法又可分为 热丝CVD法 等离子体化学气相沉积法(PCVD法)燃烧火焰法,在上述方法中,石墨转化法所得的金刚石往往是细粒乃至粉末,使用时往往需烧结。此外,产品中还含有未反应的石墨、催化剂等杂质,因此还需提纯。这种产品主要用于精密机械制造领域。要用该法合成大粒径的金刚石单晶,使之能与天然金刚石比美,至少目前是不可能的。这方面的突破有待理论的发展。气相法成功地制成了膜状金刚石,使金刚石的应用范围大大扩展,因为高温高压合成的金刚石及天然金刚石的应用只是利用其高硬度特性,其他优异的特性均因形态的限制而未能得到很好的开发和利用。膜状金刚石必然会进入半导体工业、电子工业及光学等领域。因此,气相法合成膜状金刚石方兴未艾,具有十分美好的前景。,2 石墨及其石墨层间化合物,石墨层间化合物,在共价型石墨层间化合物中,嵌入物与基质碳原子间的化学键是共价键。一般而言,石墨的层平面要变形。例如氟化石墨,其碳原子层是折皱的,折皱面内各碳原子以sp3杂化轨道与其他3个碳原子及1个氟原子结合,CC键长与一般CC单键相等,层间距为730 pm,比未插入层增大一倍多。,固体润滑剂 用氟化石墨作固体润滑剂,具有在高温、真空或氧化还原气氛中保持好的润滑性能的优点(而一般的石墨存在润滑性能下降的缺陷)。这是由于氟化石墨的层面由CF键构成,其表面能极小,容易滑动之故。,贮氢及同位素分离材料 钾、铷、铯等碱金属的石墨层间化合物在一定温度下能化学或物理吸附氢。如C8K吸附氢生成C8KHx(0 x2),且离解温度及离解能低,吸附与解吸完全可逆,达平衡的时间短,因而可作贮氢材料。更有趣的是这种吸附对氢、氖、氖有选择性,因而可用于氢同位素分离,其H2D2及H2HT分离系数都高于硅酸盐系离子交换体系。,轻型高导电材料 石墨层间化合物的电导率比石墨更高,有的超过了铜(电导率为5.3107 Sml),且这些物质的密度比一般金属低,故作为轻型导电材料受到青睬。,防水防油剂 如氟化石墨的表面自由能和聚四氟乙烯相近或略低,显示了极强的疏水性。因此,可利用此疏水性预防因水而引起的润滑和污染附着。在镀镍时,如使Ni和氟化石墨共析,可得防水性极强的金属表面。,石墨复合磁粉 将铁盐插入石墨层间可制得石墨复合磁粉,其磁性能优于Fe2O3磁粉,用作磁记录介质,可增大对带基附着力、减小对磁头的磨损、提高其防潮性能及温度稳定性。,新型催化剂 如C8K作乙烯、苯乙烯等聚合反应的催化剂 石墨钾FeCl3三元层间化合物作H2和N2为原料合成氨的催化剂,350 下1h转化率可达90%。,碳纤维的制备 目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、炭化及石墨化等4个过程。其间伴随的化学变化,包括脱氢、环化、氧化及脱氧等。,聚丙烯腈碳纤维的合成,4 富勒烯,C60分子中碳原子彼此以键键合,其杂化轨道类型介于sp2与sp3之间,被称为sp2.28杂化,平均键角为116。碳原子上剩余的轨道相互形成键。相邻两六元环的CC键长为138.8 pm,五元环与六元环共用的CC键长为143.2 pm。C70为椭球形,C240及C540与C60的差别更大一些,但都是笼形空心结构。,C60的晶体属分子晶体,晶体结构因晶体获得的方式不同而异,但均系最紧密堆积所成。用超真空升华法制得的C60单晶为面心立方结构。,C60的合成 1985年以激光气化石墨只能制取几毫克的C60,不足以开展大量的研究。直到1990年,C60的合成才取得突破。目前C60的合成法主要可分为以下两种:,石墨气化法 电弧放电法气化石墨,每小时可气化10 g石墨。所得的烟灰用沸腾的甲苯萃取,得到一种棕红色溶液。用旋转蒸发器除去溶剂后,得到一种黑色粉末,是C60和C70的混合物,其中90%以上是C60,用升华法、色谱法及萃取重结晶法可得到纯的C60和C70。也可用高频加热的方法使石墨气化来制取C60。,纯碳燃烧法 在573673 K真空中加热炭黑,收集蒸气凝结成的固体,制得C60和C70。但用一般炭黑难于得到富勒烯。将纯碳在苯火焰上燃烧也可制得g富勒烯。用乙炔作燃料也可产生富勒烯,但产率较苯低。,基于上述结构特征,有关C60的化学反应特征可归纳为如下几点:(1)C60的主要化学反应类型是对双键的加成,特别是亲核加成而非亲电加成,以及自由基加成、环加成及2过渡金属配合物的形成。此外,各种形式的氢化、卤化及路易斯酸复合物的生成反应也能进行。(2)加成反应的驱动力是富勒烯碳笼中张力的解除,即导致饱和的sp3杂化碳原子的反应。因此,大多数反应是放热的。但高度加成的产物却变得不稳定,或完全不能形成。这是由于新的张力如加成试剂的立体排斥或平面环己烷环的引入而迅速增加之故,同时这些张力因素又决定了加成试剂的数目。,此外,V、Fe、Co、Ni、Cu、Rh、La等的MxC60类化合物及哑铃形配合物如Ni(C60)2也已制备出来。这些化合物称为外键合金属C60化合物。另一种C60的金属化合物是金属包含于C60笼内部。碳笼包含物用符号MxCn表示,其制备方法是在制备富勒烯时将石墨同金属一起气化,从而在生成富勒烯时将金属包含在碳笼内。,富勒烯的加成反应中环加成最引人瞩目,因为它为富勒烯的官能化提供了有力的工具。通过合适的加成试剂进行环加成反应,几乎所有的官能团都能与C60以共价键相连,许多环加成产物非常稳定。有关环加成反应的研究报道很多,限于篇幅不能在此进一步介绍。由此可想象,富勒烯会像1825年发现的苯一样,将成为一大类新物质的母体。,其中最早令人关注的是金属掺杂富勒烯的超导性。由于室温下富勒烯是分子晶体,面心立方晶格的C60的能带结构表明是半导体,能隙为1.5eV。但经过适当的金属掺杂后,都能变成超导体。掺杂富勒烯超导体有两个特点:一是与一维有机超导体和三维氧化物超导体不同,掺杂富勒烯超导体是各向同性非金属三维超导体;二是超导临界温度Tc比金属超导体高,如掺杂I的IxC60的Tc已达57 K。据推测,若C540的合成获得突破,其掺杂物可能是室温超导体。,下表列出一些富勒烯衍生物超导体及其临界温度。,总之,富勒烯的应用前景十分诱人,但要获得广泛的应用还有许多问题需要解决。例如,富勒烯及其衍生物的合成必须有新的突破,因为目前成功的合成法所得的富勒烯成本是很高的,很大程度地限制了其应用的研究开发。,自然界发现的及人工合成的晶状线型碳都是寄生于其他晶体的晶面上,线型碳分子与该晶面正交。这种微量的薄膜不足以进行深人的结构研究,往往只能用电子衍射等手段进行表面分析。另外,由有机高分子脱氢或脱卤化氢制得的线型碳不稳定,而炔烃缩聚法制得的线型碳往往含金属离子或有机基团为端基。因而有人提出因线型碳链端碳原子价态不饱和,需有端基起稳定化作用,否则就会形成首尾相接的非平面环状结构。人工合成线型碳并非直线型而是折线型的高分子链。结晶线型碳的硬度比石墨大。,线型碳的惰性及结构特征使其可能成为优于碳纤维的超强纤维。线型碳对生物体的亲合性优于高分子材料,可能成为性能优异的生物医学材料。有报道,俄罗斯科学家已将线型碳用作外科手术的缝合线及人造动物器官,并申请了发明专利。线型碳可能提供一个非高温高压条件下合成金刚石的新途径。至于令人关注的常温超导性,尽管至今的实验结果令理论工作者失望,但须说明的是已报导的人工合成线型碳并非直线型的高分子线型碳。如果能够合成无限长链的直线型线型碳晶体,就可能解开这个谜。,(二)纳米碳管,纳米碳管(NTs)以其特有的力学、电学和化学性质,独特的准一维管状分子结构和在未来高科技领域中所具有的许多潜在的应用价值,迅速成为化学、物理及材料科学等领域的研究热点。不过,纳米碳管是否属于碳的同素异形体在学术上还存在争议。,(3)纳米电子器件 由于碳纳米管壁能被某些化学反应所“溶解”,因此它们可以作为易于处理的模具。只要用金属灌满碳纳米管,然后把碳层腐蚀掉,即可得到纳米尺度的导线。研究人员还发现碳纳米管本身就具有比普通石墨材料更好的导电性,因此碳纳米管不仅可用于制造纳米导线的模具,而且还能够用来制造导线本身。美国已用纳米碳管成功地制备了纳米碳化钛、碳化铁、碳化铝等纳米棒,在纳米碳化铌棒中还发现了超导现象。将纳米管组装到有机高分子PCM1中,其电导可提高几个数量级。我国利用碳纳米管研制出新一代显示器。这种显示器不仅体积小、重量轻、省电、显示质量好,而且响应时间仅为几微秒,从4585 都能正常工作。这一成果标志着我国在碳纳米管应用上取得了重要突破,并脐身于碳纳米管场发射研究领域的世界先进行列。(4)催化纤维和膜工业 碳纳米管还可作为其他金属和金属氧化物催化剂的载体,最大限度地提高催化剂的效率。碳纳米管“列阵”制成的取向膜,可被用作场发射器件,也可被制成滤膜,由于膜也为纳米级,可对某些分子和病毒进行过滤,从而使超滤膜进入一个崭新的天地。,最后,有一个问题,纳米碳管的发现给丰富多彩的碳家族又增添了新的成员。现在,被公认的碳单质的成员有四个。除此之外,碳单质中还有新的成员吗?目前谁也不能作出肯定或否定的答复。但有一点是很清楚的:新发现的碳笼原子簇、纳米碳管及线型碳会衍生出几大类崭新的物质,并成为很有应用前景的新型碳材料。假如还有新的碳单质!?!,