点云配准方法课件.ppt
A Brief Introduction Of Point,Cloud Registration Method,杨哲,173282,2,Point Cloud Registration Method,1,Point Cloud Registration With Target Control,2,Iterative Closest Point(ICP)Algorithm,3,Quaternion Method,4,仪器科学与工程学院,4,Outline,Two point cloud sets of A and B,are conformations of the same points in different coordinate systems,Rigid transformation:,Objective function:,仪器科学与工程学院,4,1.Point Cloud Registration With Target Control,面,(,a,),Leica standard rotation plane target,(,b,),Mensi plane target,(,c,),FARO standard plane target,(,d,),Mensi plane target,Figure 1 Different kinds of plane target,仪器科学与工程学院,1.Point Cloud Registration With Target Control,5,6 spatial similarity transformation parameters,3 angle elements:,3 translation,elements:,Adjustment model:,Or,仪器科学与工程学院,6,1.Point Cloud Registration With Target Control,Rotation matrix:,仪器科学与工程学院,1.Point Cloud Registration With Target Control,7,The expansion of Taylors formula:,Error Equation:,仪器科学与工程学院,8,1.Point Cloud Registration With Target Control,Derivative value:,G,Suppose that:,仪器科学与工程学院,1.Point Cloud Registration With Target Control,9,Error equation matrix:,Gravity-centralize:,仪器科学与工程学院,1.Point Cloud Registration With Target Control,10,N pairs of corresponding points:,Order:,仪器科学与工程学院,1.Point Cloud Registration With Target Control,11,Error equation:,仪器科学与工程学院,1.Point Cloud Registration With Target Control,12,New approximate value:,Iteration:,Finally,we get the values of parameter:,仪器科学与工程学院,2.Iterative Closest Point(ICP)Algorithm,13,Basic thought:,Firstly,from a point set,a bar curve,or a surface to find,the closest point that corresponds to one point,and then,uses this result to find two corresponding point sets.,Finally,we find out the corresponding point set and the,corresponding transformation matrix.,Basic steps:,Step1:Search for the nearest points,Step2:Solve transformation relations,Step3:Application transformation,Step4:Repeated iteration,仪器科学与工程学院,3 Quaternion Method,14,?,What is Quaternion?,?,Unit quaternions,?,Rotation matrix R,仪器科学与工程学院,3.Quaternion Method,15,Definite translation vector:,Complete registration station:,Assume that:,Minimum objective function:,The centroid of the set of basic points:,仪器科学与工程学院,3.Quaternion Method,16,Orthogonal covariance matrix of point set:,Antisymmetric matrixs cyclic components:,Construct a symmetric matrix:,仪器科学与工程学院,3.Quaternion Method,17,The unit eigenvector corresponding to the maximum,eigenvalue of matrix:,Translation matrix:,Conclusions,仪器科学与工程学院,!,18,Thank you,