欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    华师大版八年级数学上14.1勾股定理ppt课件.ppt

    • 资源ID:3678481       资源大小:1.12MB        全文页数:24页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    华师大版八年级数学上14.1勾股定理ppt课件.ppt

    14.1勾股定理,教学目标:体验勾股定理的探索过程,会运用勾股定理解决相关问题;感受数学文化的价值和我国传统数学的成就。,问题解决,问题情境,某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?,(图中每一格代表一平方厘米),观察左图:(1)正方形P的面积是 平方厘米。,(2)正方形Q的面积是 平方厘米。,(3)正方形R的面积是 平方厘米。,1,2,1,SP+SQ=SR,R,Q,P,AC2+BC2=AB2,等腰直角三角形ABC三边长度之间存在什么关系吗?,活动一,Sp=AC2 SQ=BC2 SR=AB2,这说明在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方那么,在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?,想一想,探究活动,9,16,25,9,4,13,SP+SQ=SR,BC2+AC2=AB2,(每一小方格表示1平方厘米),把R看作是四个直角三角形的面积+小正方形面积。,把R看作是大正方形面积减去四个直角三角形的面积。,S正方形R,分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立。,13,5,12,概括,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有 a2+b2=c2,直角三角形两直角边的平方和等于斜边的平方.,揭示了直角三角形三条边的关系,a,b,c,几何语言:在RtABC中 C=90(已知)a2+b2=c2(勾股定理),勾股定理:,两千多年前,古希腊有个哥拉,斯学派,他们首先发现了勾股定理,因此,在国外人们通常称勾股定理为毕达哥拉斯,年希腊曾经发行了一枚纪念票。,定理。为了纪念毕达哥拉斯学派,1955,勾 股 世 界,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家之一。早在三千多年前,,国家多年,两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。,我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中。,勾股定理史话,勾股定理从被发现到现在已有五千年的历史,远在公元前三千年的巴比伦人就知道和应用它了。我国古代也发现了这个定理,据周髀算经记载,商高(公元前1120年)关于勾股定理已有明确的认识,周髀算经中有商高答周公的话:“勾广三,股修四,径隅五。”同书中还有另一为学者陈子(公元前六七世纪)与荣方的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪(斜)至日”即 邪至日2=勾2+股2 陈子已不限于:三、四、五的特殊情形,而是推广到一般情形了。人们对勾股定理的认识,经历过一个从特殊到一般的过程,很难区分是谁最先发明的.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多,1940年卢米斯收集了这个定理的370种证明,期中包括大画家达芬奇和美国总统詹姆士阿加菲尔德的证法。到目前为止,已有四百多种证法.,b,a,c,勾股定理的证明(一),最早是由1700多年前三国时期的数学家赵爽为周髀算经作注时给出的,他用面积法证明了勾股定理,你能用面积法证明勾股定理吗?,“弦图”,b,a,c,勾股定理的证明(二),美国第二十任总统伽菲尔德的证法在数学史上被传为佳话,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。,有趣的总统证法,伽菲尔德证法,c2=a2+b2,a2=c2 b2,b2=c2 a2,结论变形,直角三角形中,两直角边的平方和等于斜边的平方;,例题1:在直角ABC中,C=90,a,b,c分别为A,B,C的对边.(1)若a=3,b=4,求c的长(2)若a=5,c=12,求b的长(3)若a:b=3:4,c=15,求a,b的长,练习(1)在直角ABC中,A=90 a=5,b=4,则求c的值?(2)在直角ABC中,B=90,a=3,b=4,则求c的值?c=24,b=25,则求a的值?(3)在直角ABC中,c=90,若a:c=5:13,b=24,求a,c的长,(3)如果一个直角三角形的两条边长分别是5厘米和12厘米,那么这个三角形的周长是多少厘米?,可要当心噢!,在直角ABC中,a=3,b=4,则求c的值?,A,D,B,C,3,4,已知ACB=90,CDAB,AC=3,BC=4.求CD的长.,我来试一试,求下列直角三角形中未知边的长:,8,x,17,12,5,x,练一练,课堂 练 习,求出下列直角三角形中未知边的长度。,6,x,25,24,8,X,例题2:如图,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米),解在RtABC中ABC=90,BC=2.16,CA=5.41,根据勾股定理得 4.96(米),问题解决,问题情境,某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?,课堂小结,1.说一说本节课我有哪些收获?2.本节课我还有哪些疑惑?,

    注意事项

    本文(华师大版八年级数学上14.1勾股定理ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开