欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    微分方程例题课件.ppt

    • 资源ID:3674756       资源大小:1.42MB        全文页数:32页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微分方程例题课件.ppt

    例.求下述微分方程的通解:,解:令,则,故有,即,解得,(C 为任意常数),所求通解:,例:,解法 1 分离变量,即,(C 0),解法 2,故有,积分,(C 为任意常数),所求通解:,例.解微分方程,解:,则有,分离变量,积分得,代回原变量得通解,即,说明:显然 x=0,y=0,y=x 也是原方程的解,但在,(C 为任意常数),求解过程中丢失了.,例.求方程,的通解.,解:注意 x,y 同号,由一阶线性方程通解公式,得,故方程可,变形为,所求通解为,思考与练习,判别下列方程类型:,提示:,可分离 变量方程,齐次方程,线性方程,线性方程,伯努利方程,例.求解,解:,这是一个全微分方程.,用凑微分法求通解.,将方程改写为,即,故原方程的通解为,或,思考:如何解方程,这不是一个全微分方程,就化成上例 的方程.,但若在方程两边同乘,备用题 解方程,解法1 积分因子法.,原方程变形为,取积分因子,故通解为,此外,y=0 也是方程的解.,解法2 化为齐次方程.,原方程变形为,积分得,将,代入,得通解,此外,y=0 也是方程的解.,解法3 化为线性方程.,原方程变形为,其通解为,即,此外,y=0 也是方程的解.,例.,解:,例.求解,解:,代入方程得,分离变量,积分得,利用,于是有,两端再积分得,利用,因此所求特解为,对于,型方程(n2),可以令,得,如果能求出其通解,逐次积分n-1次,就可得到原方程的通解,其中C1,C2.,Cn为任意常数.,例.解初值问题,解:令,代入方程得,积分得,利用初始条件,根据,积分得,故所求特解为,得,例.,的通解.,解:特征方程,特征根:,因此原方程通解为,例.,解:特征方程:,特征根:,原方程通解:,(不难看出,原方程有特解,例.,解:特征方程:,即,其根为,方程通解:,备用题,为特解的 4 阶常系数线性齐次微分方程,并求其通解.,解:根据给定的特解知特征方程有根:,因此特征方程为,即,故所求方程为,其通解为,常数,则该方程的通解是().,设线性无关函数,都是二阶非齐次线,性方程,的解,是任意,例.,提示:,都是对应齐次方程的解,二者线性无关.(反证法可证),(89 考研),例.,已知微分方程,个解,求此方程满足初始条件,的特解.,解:,是对应齐次方程的解,且,常数,因而线性无关,故原方程通解为,代入初始条件,故所求特解为,有三,例.,的通解为,的通解.,解:将所给方程化为:,已知齐次方程,求,利用,建立方程组:,积分得,故所求通解为,例.,的通解.,解:,对应齐次方程为,由观察可知它有特解:,令,代入非齐次方程后化简得,此题不需再作变换.,特征根:,设的特解为,于是得的通解:,故原方程通解为,(二阶常系数非齐次方程),代入可得:,例1.,的一个特解.,解:本题,而特征方程为,不是特征方程的根.,设所求特解为,代入方程:,比较系数,得,于是所求特解为,例2.求解定解问题,解:本题,特征方程为,其根为,设非齐次方程特解为,代入方程得,故,故对应齐次方程通解为,原方程通解为,由初始条件得,于是所求解为,解得,例4,的一个特解.,解:本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数,得,于是求得一个特解,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数,得,因此特解为,代入方程:,所求通解为,为特征方程的单根,因此设非齐次方程特解为,例6.,解:(1)特征方程,有二重根,所以设非齐次方程特解为,(2)特征方程,有根,利用叠加原理,可设非齐次方程特解为,设下列高阶常系数线性非齐次方程的特解形式:,思考与练习,时可设特解为,时可设特解为,提示:,1.(填空)设,2.已知二阶常微分方程,有特解,求微分方程的通解.,解:将特解代入方程得恒等式,比较系数得,故原方程为,对应齐次方程通解:,原方程通解为,例1.,解:,则原方程化为,亦即,其根,则对应的齐次方程的通解为,特征方程,的通解为,换回原变量,得原方程通解为,设特解:,代入确定系数,得,例2.,解:,将方程化为,(欧拉方程),则方程化为,即,特征根:,设特解:,代入 解得 A=1,所求通解为,

    注意事项

    本文(微分方程例题课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开