欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    定积分的概念-北师大版课件.ppt

    • 资源ID:3654339       资源大小:2.13MB        全文页数:47页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    定积分的概念-北师大版课件.ppt

    1.5 定积分的概念1.5.1 曲边梯形的面积1.5.2 汽车行驶的路程,这些图形的面积该怎样计算?,例题(阿基米德问题):求由抛物线y=x2与直线x=1,y=0所围成的平面图形的面积,Archimedes,约公元前287年约公元前212年,问题1:我们是怎样计算圆的面积的?圆周率是如何确定的?,问题2:“割圆术”是怎样操作的?对我们有何启示?,x,y,1.了解定积分的基本思想“以直代曲”“逼近”的思想.(重点)2.“以直代曲”“逼近”的思想的形成与求和符号.(难点),曲边梯形的概念:如图所示,我们把由直线x=a,x=b(ab),y=0和曲线y=f(x)所围成的图形称为曲边梯形,如何求曲边梯形的面积?,对任意一个小曲边梯形,用“直边”代替“曲边”(即在很小范围内以直代曲),探究点1 曲边梯形的面积,直线x1,y0及曲线yx2所围成的图形(曲边梯形)面积S是多少?,为了计算曲边梯形的面积S,将它分割成许多小曲边梯形,,方案1,方案2,方案3,y=x2,解题思想,“细分割、近似和、渐逼近”,下面用第一种方案“以直代曲”的具体操作过程,(1)分割,把区间0,1等分成n个小区间:,过各区间端点作x轴的垂线,从而得到n个小曲边梯形,它们的面积分别记作,每个区间长度为,(2)近似代替,(3)求和,(i=1,2,n),(4)取极限,演示,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,2,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,我们还可以从数值上看出这一变化趋势,分割,近似代替,求和,取极限,一般地,对于曲边梯形,我们也可采用,的方法,求其面积.,思考1:已知物体运动路程与时间的关系,怎样求物体的运动速度?,探究点2 汽车行驶的路程,思考2:已知物体运动速度为v(常量)及时间t,怎么求路程?,例 弹簧在拉伸过程中,力与伸长量成正比,即力 F(x)=kx(k是常数,x是伸长量).求弹簧从平衡位置拉长b所做的功.,将区间0,b n等分:,解:W=Fx,F(x)=kx,分点依次为:,则从0到b所做的功W近似等于:,总结提升:求由连续曲线y=f(x)对应的曲边梯形面积的方法(1)分割(2)近似代替(3)求和,(4)取极限,C,C,1.求曲边梯形面积的“四个步骤”:,不积跬步,无以至千里;不积小流,无以成江海。荀子劝学,有关的数学名言数学知识是最纯粹的逻辑思维活动,以及最高级智能活力美学体现。普林舍姆历史使人聪明,诗歌使人机智,数学使人精细。培根数学是最宝贵的研究精神之一。华罗庚没有哪门学科能比数学更为清晰地阐明自然界的和谐性。卡罗斯数学是规律和理论的裁判和主宰者。本杰明,

    注意事项

    本文(定积分的概念-北师大版课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开