新北师大数学年级上册一到七章知识点梳理.docx
新北师大数学年级上册一到七章知识点梳理新北师大版八年级上数学第一章到第七章知识点总结 第一章 勾股定理 1、勾股定理:直角三角形的两直角边的平方和等于_。如果用a,b和c分别表示直角三角形的两直角边和斜边,那么_ 直角三角形;找准斜边、直角边。 2、勾股定理的逆定理:如果三角形的三边长a,b,c满足_,那么这个三角形是直角三角形。 勾股数:满足a+b=c的三个正整数,称为_。 3、勾股定理的应用 1、在RtABC中,C90°,a12,b16,则c的长为 A26 B18 C20 D21 2、在下列数组中,能构成一个直角三角形的有 10,20,25;10,24,25;9,80,81;8;15;17 A、4组 B、3组 C、2组 D、1组 3、三角形的三边长,满足2=(+),则此三角形是 ( ). A、钝角三角形 B、锐角三角形 C、直角三角形 D、等边三角形 4、下列各组数:0.3,0.4,0.5;9,12,16;4,5,6;8a,15a,17a; 9,40,41。其中是勾股数的有组 A、1 B、2 C、3 D、4 5、将RtABC的三边都扩大为原来的2倍,得ABC,则ABC为( ) A、 直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定 6、在RtABC中,C90°,B45°,c10,则a的长为 A:5 B:10 C:52 D:5 7、已知a、b、c是三角形的三边长,如果满足(a-6)+b-8+c-10的形状是 A:底与边不相等的等腰三角形 B:等边三角形 C:钝角三角形 D:直角三角形 222222=0,则三角形第二章 实数 一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: 开方开不尽的数,如7,32等; 有特定意义的数,如圆周率,或化简后含有的数,如+8等; 3有特定结构的数,如0.1010010001等; 某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。 2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。 3、倒数 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 4、数轴 规定了原点、正方向和单位长度的直线叫做数轴。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 5、估算 三、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。 表示方法:记作“a”,读作根号a。 性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根。 表示方法:正数a的平方根记做“±a”,读作“正、负根号a”。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方:求一个数a的平方根的运算,叫做开平方。 注意a的双重非负性: a³0 a³0 3、立方根 一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根。 表示方法:记作3a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:3-a=-3a,这说明三次根号内的负号可以移到根号外面。 四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。 2、实数大小比较的几种常用方法 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 求差比较:设a、b是实数, a-b>0Ûa>b, a-b=0Ûa=b, a-b<0Ûa<b 求商比较法:设a、b是两正实数,>1Ûa>b;abaa=1Ûa=b;<1Ûa<b; bb绝对值比较法:设a、b是两负实数,则a>bÛa<b。 平方法:设a、b是两负实数,则a>bÛa<b。 五、算术平方根有关计算 1、含有二次根号“2、性质: (a)=a(a³0) a(a³0) 2a=a= 22”;被开方数a必须是非负数。 2 -a(a<0) ab=a·b(a³0,b³0) aa=(a³0,b>0) b3、运算结果若含有“a”形式,必须满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式 六、实数的运算 六种运算:加、减、乘、除、乘方 、开方 实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 运算律 加法交换律 a+b=b+a 加法结合律 (a+b)+c=a+(b+c) 乘法交换律 ab=ba 乘法结合律 (ab)c=a(bc) 乘法对加法的分配律 a(b+c)=ab+ac 第三章、位置的确定和直角坐标系 一、 在平面内,确定物体的位置一般需要两个数据。 二、平面直角坐标系及有关概念 1、平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x轴和y轴上的点,不属于任何一个象限。 3、点的坐标的概念 对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对叫做点P的坐标。 点的坐标用表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当a¹b时,和是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。 4、不同位置的点的坐标的特征 、各象限内点的坐标的特征 点P(x,y)在第一象限Ûx>0,y>0 点P(x,y)在第二象限Ûx<0,y>0 点P(x,y)在第三象限Ûx<0,y<0 点P(x,y)在第四象限Ûx>0,y<0 、坐标轴上的点的特征 点P(x,y)在x轴上Ûy=0,x为任意实数 点P(x,y)在y轴上Ûx=0,y为任意实数 点P(x,y)既在x轴上,又在y轴上Ûx,y同时为零,即点P坐标为即原点 、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上Ûx与y相等 点P(x,y)在第二、四象限夹角平分线上Ûx与y互为相反数 、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 、关于x轴、y轴或原点对称的点的坐标的特征 点P与点p关于x轴对称Û横坐标相等,纵坐标互为相反数,即点P关于x轴的对称点为P 点P与点p关于y轴对称Û纵坐标相等,横坐标互为相反数,即点P关于y轴的对称点为P 点P与点p关于原点对称Û横、纵坐标均互为相反数,即点P关于原点的对称点为P (6)、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: 点P(x,y)到x轴的距离等于y 点P(x,y)到y轴的距离等于x 22点P(x,y)到原点的距离等于x+y 三、坐标变化与图形变化的规律: 坐标的变化 x × a或 y × a x × a, y × a x ×或 y × x ×, y × x +a或 y+ a 图形的变化 被横向或纵向拉长为原来的 a倍 放大为原来的 a倍 关于 y 轴或 x 轴对称 关于原点成中心对称 沿 x 轴或 y 轴平移 a个单位 x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单 第四章、一次函数 一、函数: 一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。 二、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式,分式、二次根式、实际意义几方面考虑。 三、函数的三种表示法及其优缺点 关系式法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式法。 列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 图象法 用图象表示函数关系的方法叫做图象法。 四、由函数关系式画其图像的一般步骤 列表:列表给出自变量与函数的一些对应值 描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量x,y间的关系可以表示成y=kx+b的形式,则称y是x的一次函数。 特别地,当一次函数y=kx+b中的b=0时,称y是x的正比例函数。 2、一次函数的图像: 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征: 一次函数y=kx+b的图像是经过点的直线;正比例函数y=kx的图像是经过原点的直线。 k的符号 b的符号 函数图像 y 0 x 图像特征 k>0 b>0 图像经过一、二、三象限,y随x的增大而增大。 y 0 x y 0 x y 0 x b<0 图像经过一、三、四象限,y随x的增大而增大。 b>0 图像经过一、二、四象限,y随x的增大而减小 K<0 b<0 图像经过二、三、四象限,y随x的增大而减小。 注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。 4、正比例函数的性质 一般地,正比例函数y=kx有下列性质: 当k>0时,图像经过第一、三象限,y随x的增大而增大; 当k<0时,图像经过第二、四象限,y随x的增大而减小。 5、一次函数的性质 一般地,一次函数y=kx+b有下列性质: 当k>0时,y随x的增大而增大 当k<0时,y随x的增大而减小 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式y=kx中的常数k。确定一个一次函数,需要确定一次函数定义式y=kx+b中的常数k和b。解这类问题的一般方法是待定系数法。 7、一次函数与一元一次方程的关系: 任何一个一元一次方程都可转化为:kx+b=0的形式 而一次函数解析式形式正是y=kx+b当函数值为0时,即kx+b=0就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为kx+b=0的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值 第五章、二元一次方程组 1、二元一次方程 含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。 2、二元一次方程的解 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 3、二元一次方程组 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。 4二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 5、二元一次方程组的解法 代入法加减法 6、一次函数与二元一次方程的关系: 一次函数与二元一次方程的关系: 直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解 一次函数与二元一次方程组的关系: a1c1y=-x+二元一次方程组 ì a 的解可看作两个一次函数 x+by=c1111bb11í ax+by=c22î2ac和 y = - 2 x 1 + 2 的图象的交点。 b2b2当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象平行即无交点时,说明相应的二元一次方程组无解。 一填空题 1、方程中含有个未知数,并且的次数是1,这样的方程是二元一次方程。 2、二元一次方程组的解题思想是,方法有,法。 3、将方程102=3变形,用含x的代数式表示y是。 4、已知3x2a+b35y3a2b+2=-1是关于x、y的二元一次方程,则b=。 15、在公式s=v0t+ at2中, 当t1时,s=13,当t=2时,s=42,则t=5时,s=_。 26、解方程组í2x+3y=12ì3x-4y=17î(1)(2)时,可以_将x项的系数化相等,还可以_将y项的系 数化为互为相反数。 17、已知2x3m-2n+2ym+n与 x5y4n+1是同类项,则m=_,n=_。 28、写出2x+3y=12的所有非负整数解为_。 3a-b2a+c2b+c9、已知 = = ,则abc=_。 357ìx=mìx=n2m-610、已知í是方程2x3y=1的解,则代数式 的值为_。 和í3n-5y=ny=mîî二解答题 21、解下列方程组 1、用代入法解íì4x-3y=52x-y=2î2、用代入法解íì3x-5y=-92x+7y=-6î注意:二元一次方程组本章节的相关应用题见书上每一章节的经典题型。提高成绩的学生可以查看我的其它文档,二元一次方程组提高题型。 第六章、数据分析 1、刻画数据的集中趋势的量:平均数 、众数、中位数 2、平均数 平均数:一般地,对于n个数x1,x2,L,xn,我们把个数的算术平均数,简称平均数,记为x。 加权平均数: 3、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数。 4、中位数 一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数。 5、特别注意极差,方差和标准差的计算公式,以及这三个所能表示的实际意义! 6,要求学生会使用饼状图计算数据和计算数据。根据图形判断数据的聚散程度! 第七章、平行线的证明 1如图所示,12,380°,那么4_. 1(x1+x2+L+xn)叫做这nn2如图所示,ABC36°40,DEBC,DFAB于点F,则D_. 3如图所示,ABCD,1115°,3140°,则2_. 4如果一个三角形三个内角的比是123,那么这个三角形是_三角形 5一个三角形的三个外角的度数比为234,则与此对应的三个内角的比为_ 6.如图所示,在ABC中,BF平分ABC,CF平分ACB,A65°,则BFC_. 7“同角的余角相等”的题设是_,结论是_ 8如图所示,ABEFCD,且B1,D2,则BED的度数为_ 9如果一个等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于_ 10过ABC的顶点C作AB的垂线,如果该垂线将ACB分为40°和20°的两个角,那么A,B中较大的角的度数是_