微积分 第一章习题解答.docx
微积分 第一章习题解答习题11解答 1 设f(x,y)=xy+x11x1,求f(-x,-y),f(,),f(xy,), yxyyf(x,y)解f(-x,-y)=xy+111yx1yx+;f(xy,)=x2+y2;=2;f(,)= xyxyxyf(x,y)xy+xy2 设f(x,y)=lnxlny,证明:f(xy,uv)=f(x,u)+f(x,v)+f(y,u)+f(y,v) f(xy,uv)=ln(xy)×ln(uv)=(lnx+lny)(lnu+lnv)=lnx×lnu+lnx×lnv+lny×lnu+lny×lnv=f(x,u)+f(x,v)+f(y,u)+f(y,v)3 求下列函数的定义域,并画出定义域的图形: f(x,y)=1-x+f(x,y)=2y2-1; ; 4x-y2ln(1-x2-y2)x2y2z2f(x,y)=1-2-2-2; abcf(x,y,z)=x+y+z1-x-y-z222. 解D=(x,y)x£1,y³1 y 1 -1 O -1 1 x D=(x,y)0<x+y<1,y£4x 222 y 1 -1 O -1 1 x 1 ìüx2y2z2D=í(x,y)2+2+2£1ý abcîþz c -a -b a x O b y D=(x,y,z)x³0,y³0,z³0,x2+y2+z2<1 4求下列各极限: limz O x y x®0y®11-xy1-0=1 22x+y0+1ln(x+ey)x+y22limx®1y®0=ln(1+e0)1+0=ln2 lim2-xy+4(2-xy+4)(2+xy+4)1=lim=- x®0x®0xy4xy(2+xy+4)y®0y®0limsin(xy)sin(xy)=lim×x=2 x®2x®2yxyy®0y®05证明下列极限不存在: x2y2x+ylim ; lim22x®0xy+(x-y)2x®0x-yy®0y®0证明 如果动点P(x,y)沿y=2x趋向则limx+yx+2x=lim=-3; x®0x®0x-2xx-yy=2x®0,则lim如果动点P(x,y)沿x=2y趋向x+y3y=lim=3 y®0y®0x-yyx=2y®0 2 所以极限不存在。 证明: 如果动点P(x,y)沿y=x趋向x2y2x4则lim22=lim4=1; 2x®0x®0xxy+(x-y)y=x®0如果动点P(x,y)沿y=2x趋向所以极限不存在。 6指出下列函数的间断点: x2y24x4,则lim=lim4=0 2222x®0x®0xy+(x-y)4x+xy=2x®0y2+2xf(x,y)=; z=lnx-y。 y-2x解 为使函数表达式有意义,需y-2x¹0,所以在y-2x=0处,函数间断。 为使函数表达式有意义,需x¹y,所以在x=y处,函数间断。 习题12 1z=xy+ yx¶z1y¶z1x=-2;=-2. ¶xyx¶yxy (2) ¶z=ycos(xy)-2ycos(xy)sin(xy)=ycos(xy)-sin(2xy) ¶x¶z=xcos(xy)-2xcos(xy)sin(xy)=xcos(xy)-sin(2xy) ¶y(3)¶z=y(1+xy)y-1y=y2(1+xy)y-1, ¶x1¶zx=ln(1+xy)+y, z¶y1+xy lnz=yln(1+xy),两边同时对y求偏导得xyxy¶z=zln1(+xy)+=(1+xy)yln1(+xy)+; ¶y1+xy1+xy2y3x3-2y¶zx=(4), y¶xx(x3+y)x+2x1- 3 ¶z=¶y1x2x+yx2y=1;3x+y y¶uyz-1¶u1z¶u=x,=xlnx,=-2xzlnx(5)¶x; z¶yz¶zzyyz(x-y)z-1¶u(6), =2z¶x1+(x-y)z(x-y)z-1¶u , =-2z¶y1+(x-y)¶u(x-y)zln(x-y); =2z¶z1+(x-y)2.(1)zx=y,zy=x,zxx=0,zxy=1,zyy=0; (2) zx=asin2(ax+by),zy=bsin2(ax+by), zxx=2a2cos2(ax+by),zxy=2abcos2(ax+by),zyy=2b2cos2(ax+by). 222 3 fx=y+2xz,fy=2xy+z,fz=2yz+x,fxx=2z,fxz=2x,fyz=2z, fxx(0,0,1)=2,fxz(1,0,2)=2,fyz(0,-1,0)=0. 4 ttttzx=-2sin2(x-),zt=sin2(x-),zxt=2cos2(x-),ztt=-cos2(x-) 2222tt2ztt+zxt=-2cos2(x-)+2cos2(x-)=0. 22yyy115.(1) zx=-2ex, zy=ex,dz=-2exdx+ exdy; xxxx (2) z=yyyyyxx1z=dz= dx+dy; ln(x2+y2),zx=2,y2x2+y2x2+y2x2+y2x+y2y12-ydx+xdyyxxxdz=-2z= (3)zx= , ,; yy2y2x2+y2x2+y2x+y21+1+xx- 4 yz-1,uy=zxyzlnx,uz=yxyzlnx, (4) ux=yzxdu=yzxyz-1dx+zxyzlnxdy+yxyzlnxdz. 6. 设对角线为z,则z=x2+y2,zx=xx+y22,zy=yx+y22, dz=xdx+ydyx+y22当x=6,y=8,Dx=0.05,Dy=-0.1时,Dz»dz=6´0.05+8´(-0.1)6+822 =-0.05(m). 7. 设两腰分别为x、y,斜边为z,则z=x2+y2, , dz=zx=xx+y22,zy=yx+y22xdx+ydyx+y22, 设x、y、z的绝对误差分别为dx、dy、dz, 当x=7,y=24,Dx£dx=0.1,Dy£dy=0.1时, z=72+242=25 Dz£dz£7´0.1+24´0.17+2422 =0.124,z的绝对误差dz=0.124 z的相对误差Dz0.124»=0.496%. z258. 设内半径为r,内高为h,容积为V,则V=pr2h,Vr=2prh,Vh=pr2,dV=2prhdr+pr2dh, 当r=4,h=20,Dr=0.1,Dh=0.1时, DV»dV=2´3.14´4´20´0.1+3.14´42´0.1=55.264(cm3). 习题13 xyyx-2du¶fdx¶fdy¶fdzzzz=+=+ ×aeax+×2a(ax+1) 1.xy2xy2xy2dx¶xdx¶ydx¶zdx1+1+1+zzzyz+axz-2axy(ax+1)(ax+1)eax(1+a2x2)=. 422axz2+x2y2(ax+1)+xeh¶z¶f¶x¶f¶h=+2.=¶x¶x¶x¶h¶x1-x24x3+arcsinx×4=422x+y1-x-y-x5 4x3arcsin1-x2-y2x+y44-xln(x4+y4)(1-x-y)(x+y)2222h¶z¶f¶x¶f¶h=+=¶y¶x¶y¶h¶y1-x24y3arcsin1-x2-y2x4+y43. (1) 4y3+arcsinx×4=422x+y1-x-y-y-yln(x4+y4)(1-x-y)(x+y)2222. ¶u¶uxyxy=2xf1+yef2, =-2yf1+xef2. ¶y¶xx1y¶u¶u1¶u=×f1, =-2×f1+f2,=-2×f2. ¶yzy¶xy¶zz(2) (3) ¶u¶u¶u=f1+yf2+yzf3,=xf2+xzf3,=xyf3. ¶y¶z¶x¶u¶u¶u=2xf1+yf2+f3=2yf1+xf2+f3,=f3. ¶y¶x¶z¶z¶z=xf1+f2, =yf1,¶y¶x(4) 4 .(1)¶f1¶2z2()=y=yf×y=yf11, 112¶x¶x¶2z¶(yf1)=f1+y¶f1=f1+y(f11×x+f12)=f1+xyf11+yf12, =¶x¶y¶y¶y¶f1¶f2¶2z¶2()=xf+f=x+=x(f×x+f)+f×x+f=xf11+2xf12+f2212111221222¶y¶y¶y¶y(2) ¶z¶z=2xyf1+x2f2, =y2f1+2xyf2,¶y¶x¶f2¶2z¶22¶f1=yf+2xyf=y+2yf+2xy 122¶x¶x¶x2¶x()=y2(f11×y2+f12×2xy)+2yf2+2xy(f21×y2+f22×2xy)=2yf2+yf11+4xyf12+4xyf22¶f¶f¶2z¶2=yf1+2xyf2=2yf1+y21+2xf2+2xy2 ¶x¶y¶y¶y¶y4322.() 6 =2yf1+y2(f11×2xy+f12×x2)+2xf2+2xy(f21×2xy+f22×x2)=2yf1+2xf2+2xyf11+2xyf22+5xyf123322¶f1¶2z¶22¶f2 =2xyf+xf=2xf+2xy+x1212¶y¶y¶y¶y()=2xf1+2xy(f11×2xy+f12×x2)+x2(f21×2xy+f22×x2)=2xf1+4xyf11+4xyf12+xf225 Q2234¶u¶u¶x¶u¶y1¶u3¶u¶u¶u¶x¶u¶y3¶u1¶u, =+=+,=+=-+¶s¶x¶s¶y¶s2¶x2¶y¶t¶x¶t¶y¶t2¶x2¶y(¶u21¶u23¶u¶u3¶u2¶u23¶u23¶u¶u1¶u2)=+,=-+, ¶s4¶x2¶x¶y4¶y¶t4¶x2¶x¶y4¶y¶u2¶u¶u¶u)+2=2+2. ¶s¶t¶x¶y-(x+y+z)-(x+y+z)-(x+y+z), Fx=1+e,Fy=1+e, (6 (1) 设F(x,y,z)=x+y+z-eFz=1+e-(x+y+z), FyFx¶z¶z=-=-1,=-=-1 ¶xFz¶yFz(2)设F(x,y,z)=z-x2-y2tanFx=-xx-y22zx-y22,1(-)(x2-y2)2x2-y2z3-2tanzx-y22-x2-y2sec22xz=-xx-yyx2-y222tanzx-yzx2-y222+xzsec222x-yzx-yz22, 3 Fy=tan-x2-y2sec2-122(-)(x-y)2(-2yz) 2x2-y2=yx-y22tanzx-y22-yz2secx2-y2zzx-y22, Fz=1-x2-y2sec212x-y2x-y22=-tan22zx-y2, 7 F¶zxzxzcot+2csc2=-x=-2Fz¶xx2-y2x2-y2x-yFy¶z=-=¶yFzyx-y22zx-yzx-y2222, cotzx-y22-yz2cscx2-y2. xy, z(3) 设F(x,y,z)=x+2y+z-2xyz,Fx=1-yzxzFx=1- Fy=2-xy. F¶z=-x=Fz¶xFyyz-xyz¶z=-,=¶yFzxyz-xyxz-2xyzxyz-xy(4) 设F(x,y,z)=xzx11x1-ln=-lnz+lny,Fx=,Fy=Fz=-2-, zyzzyzzFyFxz¶z¶zz2=-, =-=Fzx+z¶y¶xFzy(x+z)7.设F(x,y,z)=x+2y-3z-2sin(x+2y-3z),Fx=1-2cos(x+2y-3z), QFy=2-4cos(x+2y-3z),Fz=-3+6cos(x+2y-3z), Fy2F1¶z¶z=-x=,=-=, Fz3¶y¶xFz3¶z¶z=1. +¶x¶y 8.设F(x,y,z)=f(cx-az,cy-bz),Fx=cf1,Fy=cf2,Fz=-af1-bf2, FyFxcf1cf2¶z¶z=-,=-=, Fzaf1+bf2¶y¶xFzaf1+bf2 a¶z¶z=c. +b¶y¶x9. (1)方程两边同时对x求导得 x(6z+1)ìdydyìdz=-,ïïdx=2x+2ydx,ïdx2y(3z+1) 解之得íídydzïdy=xï2x+4y+6z=0,ïdxdxîîdx3z+1(2) 方程两边同时对z求导得 8 ìdxdyïdz+dz+1=0, í解之得dydxï2x+2y+2z=0dzdzî (3) 方程两边同时对x求偏导得 ìdx=ïïdzídyï=ïîdzy-z,x-y z-x.x-yìu1=eï íï0=euîsinvì¶u¶u¶u¶v=,+sinv+ucosv,uï¶xe(sinv-cosv)+1¶x¶x¶x解之得ï íu¶u¶u¶v¶vcosv-eï=-cosv+usinv,.u¶x¶x¶xïî¶xue(sinv-cosv)+1同理方程两边同时对y求偏导得 -cosvì¶u¶u¶vìu¶u=,0=e+sinv+ucosv,uïïïï¶xe(sinv-cosv)+1¶y¶y¶y í解之得í u¶u¶u¶v¶vsinv+eï1=euï=-cosv+usinv,.uï¶y¶y¶yïîî¶xue(sinv-cosv)+1习题14 1 求下列函数的方向导数¶u¶lPo22u=x+2y+3z,P0(1,1,0),l=(1,-1,2) 解:¶u¶x¶u¶yP0=2x=4yP0=2 =4 P0P0¶u¶zP0=6z16P0=0 16,26) 1626l0=(¶u¶l,-P0=2*16+4*(-)=-. u=,P0(1,1,1),l=(2,1,-1); 解:yxz¶u¶x¶u¶yyz-1y=z(-)P0xx2yz-11=zP0xxP0=-1, P0=1, 9 ¶u¶z0P0yy=zlnxxP0=0, l=(26,16,-1626) 1616 ¶u¶lP0=(-1)*+1*=-. 22u=ln(x+y),P0(1,1),l与ox轴夹角为p3; 解:¶u¶x¶u¶yP0=2xx2+y22yx2+y2P0=1, P0=P0=1, 由题意知a=0p3,则b=p6, l=(cos,cos)=(,pp3613) 22 ¶u¶lP0=1*131+3+1*=. 222u=xyz,P0(5,1,2),P1(9,4,14),l=P0P1. ¶u¶x¶u¶yP0=yz=xzP0=2, =10, P0P0¶u¶zP0=xyP0=5, 4312l=(4,3,12),l0=(,), 131313¶u431298=2*+10*+5*=. P0¶l131313132 求下列函数的梯度gradf f(x,y)=sin(xy)+(cos(xy); 22 10 解:¶f=cos(x2y)*(2xy)-sin(xy2)*y2, ¶x¶f=cos(x2y)*x2-sin(xy2)*(2xy), ¶y222222,xcos(xy)-2xysin(xy) grad=f(2xycosx(y)-ysinxyyy(2)f(x,y)=e. xx¶fyy11y解:=(-2)ey+ey=ey(1-), ¶xxyxxx¶f1yyyx11=e+e(-2)=ey(-), ¶yxxxyy1y11。 gradf=(ey(1-),ey(-))xxxy3 一个登山者在山坡上点(-xxxxxxxx33,-1,)处,山坡的高度z由公式z=5-x2-2y2近似,其24中x和y是水平直角坐标,他决定按最陡的道路上登,问应当沿什么方向上登。 解:¶z¶x¶z¶y33(=,-1,)24=-2x33(=,-1,)24=3, 33(=,-1,)24=-4y33(=,-1,)24=4, 按最陡的道路上登,应当沿方向上登。 4 解:¶T¶T=y(1-y)(1-2x),=x(1-x)(1-2y) ¶x¶y11(,)43沿方向-gradT11=(-,-) 9165 解:设路径为y=f(x),在点(x,y)处gradT=(-2x,-8y) y=f(x)在(x,y)点的切向量为t=(1,dy) dxt,T Qgrad平行于切向量 因为过(1,2),y=-2x 4dxdyÞy=cx4 =-2x-8y 11 习题1-5 tt+1,y=,z=t2在对应于t=1点处的切线及法平面方程。 1+tt1解:当t=1时,x(1)=,y(1)=2,z(1)=1, 21、求曲线x=T1(,2,1)21×(1+t)-1×tt-(t+1)1=x'(1),y'(1),z'(1)=,2t=,-1,2 22(1+t)t4t=1x-12y-2z-1x-12y-2z-1=,即: =14-121-48故所求切线方程为:11法平面方程为:(x-)-(y-2)+2(z-1)=0 即: 2x-8y+16z=1 422、求下列空间曲线在指定点处的切线和法平面方程 22ìïx+y=2í2 在点(1,1,1) 2ïîy+z=2解 :将方程两端对x求导,得 xìdy=-ïyïdx 在M(1,1,1)处T=(1,-1,1) Þíïdz=xïîdxzy-1=z-1 -1故所求的切线方程为:x-1=法平面方程:x-y+z=1 ìx2+y2+z2=6í 在点(1,-2,1) îx+y+z=0解法1:将方程两端对x求导,得 dydzdzììdy2x+2y×+2z×=0y×+z×=-xïïïïdxdxdxdxÞí íï1+dy+dz=0ïdy+dz=-1ïïîdxdxîdxdx当J=yz11=y-x¹0时,有 dy1-xzz-xdz1y-xx-y,=× =×=dxJ-11y-zdxJ1-1y-z 12 T(1,-2,1)ìz-xx-yüìdydzü=í1,ý=í1,=1,0,-1 ýdxdxy-zy-zîþ(1,-2,1)îþ(1,-2,1)ìx-1z-1=ï故所求的切线方程为:í-11 ïîy+2=0法平面方程:-(x-1)+0×(y+2)+(z-1)=0 即:x-z=0 ì2xdx+2ydy+2zdz=0解法2:将方程组两端求微分:得í îdx+dy+dz=0曲线在点(1,-2,1)处的切向量为 3. y11'''-z, Fx(P0)=-,Fy(P0)=,Fz(P0)= -1,曲面在点x2211ppP0的切平面方程为:-(x-1)+(y-1)+(-1)(z-)=0,即: x - y - 2z -=0; 2242解:令 F=arctgx-1y-14,即:x-1=y-1=111-1-1-22x令F(x,y,z)=z-y-ln z11则Fx=-,Fy=-1,Fz=1+ xz法线方程为:z-pz-2p4 ; 曲面在点(1,1,1)点处的切平面的法向量为:n=-1,-1,+2 故所求的切平面方程为:(-1)×(x-1)+(-1)×(y-1)+2(z-1)=0即: x+y-2z=0 法线方程为: 令F=2+2-8,Fx(P0)=4ln2,Fy(P0)=-4ln2,Fz(P0)=- 16ln2,曲面在点P0的切平面方程为:4ln2-4ln2-16ln2=0, 即:x-y-4z=0,法线方程为:xzyzx-1y-1z-1 =-1-12'''x-2y-2z-1x-2y-2z-1=,即: 4ln24ln2-16ln211-4 13 4、解:Q¶z1¶z11111=,=, ,= Ñz(1,2)=¶xx+y¶yx+yx+yx+y(1,2)33又抛物线y2=4x在(1,2)点处的切线斜率为:dy=1 dx(1,2)ìüïdyï抛物线y2=4x在(1,2)点处偏向x轴正向的切线方向为T=í1,ý=1,1 ïîdx(1,2)ïþì11üT0=í,ý î22þ故所求的方向导数为:习题1-6 1. 解:由 ¶z¶T(1,2)222ì11üì11ü=+= =í,ý×í,ý63î33þî22þ6¶f¶f=-4-2y=0,有 x=2, y=-2, 即P0(2, -2)为 f(x,y) 的驻点, =4-2x=0, ¶y¶x¶2f¶2f¶2f¶2f又=-2,=0,2=-2, D=4>0,2(P0)=-2 2¶x¶x¶y¶x¶y故P0 (2,-2)为f(x,y)的极大值点, 其极大值为f(2,-2)=8. 2. ì¶f2=3x-6y-39令0ïìx2-2y-13=0¶xï解:由 í有í 驻点:(5,6)和(1,-6) ¶fîy-3x+9=0ï=2y-6x+18令0ïî¶y¶2f¶2f¶2fQ2=6x 2=2 =-6 ¶x¶x¶y¶yD(5,6)=6x×2-(-6)2(5,6)=(12x-36)(5,6)¶2f=24>0,而2¶x=6x(5,6)=30 (5,6)f(x,y)在点(5,6)取得极小值f(5,6)=-88 又D(1,-6)=6x×2-(-6)2(1,-6)=(12x-36)(1,-6)=-24<0 f(x,y)在点(1,-6)不取得极值 14 3、求z=x2-y2在闭区域x2+4y2£4上的最大值和最小值 ì¶z=2x=0ïï¶x解:由í,得唯一驻点(0,0) ¶zï=-2y=0ïî¶yx2又在边界x+4y=4即椭圆+y2=1上,z=x2-y2=4-5y2 yÎ(-1,1) 422由d(4-5y)=0,得驻点:y=0Î(-1,1) dy所有可能的极值点为:(0,0) (2,0) (-2,0) (0,1) 相应的函数值为: 0 4 4 -1 -1 4、求抛物线y=x2和直线x-y-2=0之间的最短距离。 解:设P(x,y)为抛物线y=x2上任意一点,它到直线x-y-2=0的距离为 d=x-y-22,d最小当且仅当d2最小 1(x-y-2)2在条件y2=x下的最小值。 2解法1 此问题即是求d2=设L=1(x-y-2)2+l(y-x2) 21ìL=ïx2×2(x-y-2)×1-2xl令0ì(1-2l)x-y-2=0ï111ïï由íLy=×2(x-y-2)×(-1)+l令0,即íl-x+y+2=0得唯一驻点(,) 242ïy-x2=0ïîïLl=y-x2令0ïî故由实际问题知抛物线y=x2和直线x-y-2=0之间的最短距离在在,为: dmin=d(1,1)=2472 8解法2 设抛物线y=x2上点P(x,x2),它到直线x-y-2=0的距离为 15 d=x-y-22=x-x2-221d最小当且仅当d2=(x-x2-2)2最小 21设f(x)=(x-x2-2)2 2f¢(x)=(x-x2-2)×(1-2x)令0 Þ唯一驻点x=1 2f¢¢(x)=(1-2x)×(1-2x)+(x-x2-2)×(-2)=(1-2x)2+2(x2-x+2) 1Qf¢¢=(1-2x)2+2(x2-x+2)212=7>0 2当x=1时,f(x)有极小值,从而该极小值就是所求的最小值 2x-x2-2212d1=2=72 8故抛物线y=x2和直线x-y-2=0之间的最短距离为72 85、求抛物线z=x2+y2被平面x+y+z=1截成一椭圆,求原点到此椭圆的最长与最短距离。 解:设椭圆上任意一点为(x,y,z),它到原点的距离为d=x2+y2+z2 ìz=x2+y2此问题即是求d=x+y+z在条件í下的最大值和最小值。 îx+y+z=1222令L=x+y+z+l(x+y-z)+m(x+y+z-1) ìL=2x+2lx+m令0ïxïLy=2y+2ly+m令0ïï由íLz=2z-l+m令0ï22ïLl=x+y-z令0ïL=x+y+z-1令0ïîm 22222由-得2(1+l)(x-y)=0 若l=-1代入,得m=0, 16 1再代入,z=-<0, 不合题意 2l¹-1,有x=y ì2x2=z-1±3代入,由í,解得y=x=, z=2±3 2î2x+z=1驻点为:P1(-1+3-1+3-1-3-1-3,-1+3)和P2(,-1-3) 2222P1dP=x2+y2+z21=9+53,dP=x2+y2+z22=9-53 P2由实际问题知,所求最大值和最小值存在,分别为6. 9+53和9-53 解: 设圆柱高为H,圆锥高为h ,圆柱圆锥底半径为r,则浮标体积V=prH+222p3r2h, 故:3V-pr(3H+2h)=0 (1) 浮标表面积S(r,h,H)=2prH+2prr2+h2=2pr(H+r2+h2) 令L(r,h,H)=2pr(H+r2+h2)+l3V-pr(3H+2h) 2 ¶L由=2p(H+r2+h2)+2p¶r 有lr=r2r+h22-2rpl(3H+2h)=0 ¶L=2p¶hrhr2+h2-2plr2=0 (3) ¶L=2pr-3plr2=0 (4) ¶Hh2r52-=0, 故=, 代入有, r=223h23r+hh,再由,有H=h, h=25r, ( r,25r,25r)为S(r,h,H) 唯一驻点,由于实际问题存在最值,故当H=h,17 r5=时,材料最省。 h27 解设S=BC=a, 则横截面积S(2a+2hctgq )h=(a+h ctgq )h,a= -h×ctgq,湿周hhSh F( q)h=,a+2C=Da+2=-h×cqt+g2sqinhsqin¶fS2由=-2-ctgq+=0 (1) (BC+AD)h=1212¶hhsinq ¶f¶q=1-2cosqsin2q=0 由(2)有1-2cosq=0,q=p3, 由(1), h=S43, h=S43 时,湿周最小. 18 (2) (p3,S43)为唯一驻点,故当q=p3, 即