微分方程.docx
微分方程高等数学教案 §12 微分方程 第十二章 微分方程 教学目的: 1了解微分方程及其解、阶、通解,初始条件和特等概念。 2熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4 会用降阶法解下列微分方程:y(n)=f(x), y¢¢+f(x,y¢)和y¢¢=f(y,y¢) 5 理解线性微分方程解的性质及解的结构定理。 6掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9会解微分方程组解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 (n)2、可降阶的高阶微分方程y=f(x), y¢¢+f(x,y¢)和y¢¢=f(y,y¢) 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 1 高等数学教案 §12 微分方程 4、欧拉方程 §12. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M(x, y)处的切线的斜率为2x, 求这曲线的方程. 解 设所求曲线的方程为y=y(x). 根据导数的几何意义, 可知未知函数y=y(x)应满足关系式(称为微分方程) dy=2x. (1) dx此外, 未知函数y=y(x)还应满足下列条件: x=1时, y=2, 简记为y|x=1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) y=2xdx, 即y=x2+C, (3) ò其中C是任意常数. 把条件“x=1时, y=2”代入(3)式, 得 2=12+C, 由此定出C=1. 把C=1代入(3)式, 得所求曲线方程(称为微分方程满足条件y|x=1=2的解): y=x2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t秒时行驶了s米. 根据题意, 反映制动阶段列车运动规律的函数s=s(t)应满足关系式 d2s=-0.4. (4) dt22 此外, 未知函数s=s(t)还应满足下列条件: 高等数学教案 §12 微分方程 t=0时, s=0, v=ds=20. 简记为s|=0, s¢|=20. (5) t=0t=0dt 把(4)式两端积分一次, 得 v=ds=-0.4t+C; (6) 1dt再积分一次, 得 s=-0.2t2 +C1t +C2, (7) 这里C1, C2都是任意常数. 把条件v|t=0=20代入(6)得 20=C1; 把条件s|t=0=0代入(7)得0=C2. 把C1, C2的值代入(6)及(7)式得 v=-0.4t +20, (8) s=-0.2t2+20t. (9) 在(8)式中令v=0, 得到列车从开始制动到完全停住所需的时间 t=20=50(s). 0.4再把t=50代入(9), 得到列车在制动阶段行驶的路程 s=-0.2´502+20´50=500(m). 解 设列车在开始制动后t秒时行驶了s米, s¢¢=-0.4, 并且s|t=0=0, s¢|t=0=20. 把等式s¢¢=-0.4两端积分一次, 得 s¢=-0.4t+C1, 即v=-0.4t+C1(C1是任意常数), 再积分一次, 得 s=-0.2t2 +C1t +C2 (C1, C2都C1是任意常数). 由v|t=0=20得20=C1, 于是v=-0.4t +20; 由s|t=0=0得0=C2, 于是s=-0.2t2+20t. 令v=0, 得t=50(s). 于是列车在制动阶段行驶的路程 s=-0.2´502+20´50=500(m). 3 高等数学教案 §12 微分方程 几个概念: 微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程. 偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程. 微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x3 y¢¢¢+x2 y¢¢-4xy¢=3x2 , y(4) -4y¢¢¢+10y¢¢-12y¢+5y=sin2x, y(n) +1=0, 一般n阶微分方程: F(x, y, y¢, × × × , y(n) )=0. y(n)=f(x, y, y¢, × × × , y(n-1) ) . 微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y=j(x)在区间I上有n阶连续导数, 如果在区间I上, Fx, j(x), j¢(x), × × ×, j(n) (x)=0, 那么函数y=j(x)就叫做微分方程F(x, y, y¢, × × ×, y(n) )=0在区间I上的解. 通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解. 初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如 x=x0 时, y=y0 , y¢= y¢0 . 一般写成 ¢. yx=x0=y0, y¢x=x0=y0 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题. 如求微分方程y¢=f(x, y)满足初始条件yx=x0=y0的解的问题, 记为 ìy¢=f(x,y) í. yx=x0=y0î 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数 4 高等数学教案 §12 微分方程 x=C1cos kt+C2 sin kt 是微分方程 2dx+k2x=0 dt2的解. 解 求所给函数的导数: dx=-kCsinkt+kCcoskt, 12dtd2x=-k2Ccoskt-k2Csinkt=-k2(Ccoskt+Csinkt). 1212dt22dx将2及x的表达式代入所给方程, 得 dt -k2(C1cos kt+C2sin kt)+ k2(C1cos kt+C2sin kt)º0. 2dx 这表明函数x=C1coskt+C2sinkt 满足方程2+k2x=0, 因此所给函数是所给方程的解. dt2dx 例4 已知函数x=C1coskt+C2sinkt(k¹0)是微分方程2+k2x=0的通解, 求满足初始条件 dt x| t=0 =A, x¢| t=0 =0 的特解. 解 由条件x| t=0 =A及x=C1 cos kt+C2 sin kt, 得 C1=A. 再由条件x¢| t=0 =0, 及x¢(t) =-kC1sin kt+kC2cos kt, 得 C2=0. 把C1、C2的值代入x=C1cos kt+C2sin kt中, 得 x=Acos kt. §12. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y¢=2x的通解. 为此把方程两边积分, 得 y=x2+C. 一般地, 方程y¢=f(x)的通解为y=f(x)dx+C(此处积分后不再加任意常数). 5 ò高等数学教案 §12 微分方程 2. 求微分方程y¢=2xy2 的通解. 因为y是未知的, 所以积分2xy2dx无法进行, 方程两边直 ò接积分不能求出通解. 为求通解可将方程变为 -1dy=2xdx, 两边积分, 得 y21=x2+C, 或y=-21, yx+C可以验证函数y=-1是原方程的通解. x2+C 一般地, 如果一阶微分方程y¢=j(x, y)能写成 g(y)dy=f(x)dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G(y)=F(x)+C, 由方程G(y)=F(x)+C所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P(x, y)dx+Q(x, y)dy=0 在这种方程中, 变量x与y 是对称的. 若把x看作自变量、y看作未知函数, 则当Q(x,y)¹0时, 有 dyP(x,y). =-dxQ(x,y)若把y看作自变量、x看作未知函数, 则当P(x,y)¹0时, 有 dx=-Q(x,y). dyP(x,y) 可分离变量的微分方程: 如果一个一阶微分方程能写成 g(y)dy=f(x)dx (或写成y¢=j(x)y(y) 的形式, 就是说, 能把微分方程写成一端只含y的函数和dy, 另一端只含x的函数和dx, 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y¢=2xy, 是. Þy-1dy=2xdx . 6 高等数学教案 §12 微分方程 (2)3x2+5x-y¢=0, 是. Þdy=(3x2+5x)dx. (3)(x2+y2)dx-xydy=0, 不是. (4)y¢=1+x+y2+xy2, 是. Þy¢=(1+x)(1+y2). (5)y¢=10x+y, 是. Þ10-ydy=10xdx. (6)y¢=x+y. 不是. yx 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g(y)dy =f(x)dx的形式; 第二步 两端积分:g(y)dy=f(x)dx, 设积分后得G(y)=F(x)+C; 第三步 求出由G(y)=F(x)+C所确定的隐函数y=F(x)或x=Y(y) G(y)=F(x)+C , y=F (x)或x=Y(y)都是方程的通解, 其中G(y)=F(x)+C称为隐式(通)解. 例1 求微分方程òòdy=2xy的通解. dx 解 此方程为可分离变量方程, 分离变量后得 1dy=2xdx, y1dy=2xdx, òyò两边积分得 即 ln|y|=x2+C1, 从而 y=±ex2+C1=±eC1ex. 2因为±eC1仍是任意常数, 把它记作C, 便得所给方程的通解 y=Cex. 解 此方程为可分离变量方程, 分离变量后得 21dy=2xdx, y1dy=2xdx, òyò7 两边积分得 即 ln|y|=x2+lnC, 高等数学教案 §12 微分方程 从而 y=Cex. 例2 铀的衰变速度与当时未衰变的原子的含量M成正比. 已知t=0时铀的含量为M0, 求在衰变过程中铀含量M(t)随时间t变化的规律. 解 铀的衰变速度就是M(t)对时间t的导数2dM. dt 由于铀的衰变速度与其含量成正比, 故得微分方程 dM=-lM, dtdM<0. dt其中l(l>0)是常数, l前的曲面号表示当t增加时M单调减少. 即由题意, 初始条件为 M|t=0=M0. 将方程分离变量得 dM=-ldt. M两边积分, 得òM=ò(-l)dt, dM即 lnM=-lt+lnC, 也即M=Ce-lt. 由初始条件, 得M0=Ce0=C, 所以铀含量M(t)随时间t变化的规律M=M0e-lt . 例3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系. 解 设降落伞下落速度为v(t). 降落伞所受外力为F=mg-kv( k为比例系数). 根据牛顿第二运动定律F=ma, 得函数v(t)应满足的方程为 mdv=mg-kv, dt初始条件为 v|t=0=0. 方程分离变量, 得 8 高等数学教案 §12 微分方程 dv=dt, mg-kvm两边积分, 得dv=dt, òmg-kvòm -ln(mg-kv)=1kt+C, m1-kC1-ktmgem即 v=, +CeC=-kkmg将初始条件v|t=0=0代入通解得C=-, k-ktmg于是降落伞下落速度与时间的函数关系为v=(1-em). kdy 例4 求微分方程=1+x+y2+xy2的通解. dx 解 方程可化为 dy=(1+x)(1+y2), dx1dy=(1+x)dx, 1+y2分离变量得 两边积分得 1dy=(1+x)dx, 即arctany=1x2+x+C. ò1+y2ò2于是原方程的通解为y=tan(x2+x+C). 例4 有高为1m的半球形容器, 水从它的底部小孔流出, 小孔横截面面积为1cm2. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面高度h随时间t变化的规律. 解 由水力学知道, 水从孔口流出的流量Q可用下列公式计算: Q=12dV=0.62S2gh, dt其中0. 62为流量系数, S为孔口横截面面积, g为重力加速度. 现在孔口横截面面积S=1cm2, 故 dV=0.622gh, 或dV=0.622ghdt. dt 另一方面, 设在微小时间间隔t, t+dt内, 水面高度由h降至h+dh(dh<0), 则又可得到 9 高等数学教案 §12 微分方程 dV=-pr2dh, 其中r是时刻t的水面半径, 右端置负号是由于dh<0而dV>0的缘故. 又因 r=1002-(100-h)2=200h-h2, 所以 dV=-p(200h-h2)dh. 通过比较得到 0.622ghdt=-p(200h-h2)dh, 这就是未知函数h=h(t)应满足的微分方程. 此外, 开始时容器内的水是满的, 所以未知函数h=h(t)还应满足下列初始条件: h|t=0=100. 将方程0.622ghdt=-p(200h-h2)dh分离变量后得 dt=-两端积分, 得 t=-p0.622g132(200h-h2)dh. p0.622gò132(200h-h2)dh, (400h2-2h2)+C, 即 t=-50.622g3其中C是任意常数. 由初始条件得 p35(400´1002-2´1002)+C, t=-50.622g3 C=p35p(400000-200000)=´14´105. 350.622g0.622g15p0.622g(7´1053532-10h+3h2). p因此 t=10 高等数学教案 §12 微分方程 上式表达了水从小孔流出的过程中容器内水面高度h与时间t之间的函数关系. §12. 3 齐次方程 齐次方程: 如果一阶微分方程dy=f(x,y)中的函数f(x, y)可写成 dxyy的函数, 即f(x,y)=j, 则称这方程为齐次方程. xx 下列方程哪些是齐次方程? dyy+y2-x2dyyy=Þ=+2-1. (1)xy¢-y-y-x=0是齐次方程.Þdxxdxxx222dy1-y (2)1-xy¢=1-y不是齐次方程.Þ. =dx1-x222dyx2+y2dyxy=Þ=+. (3)(x+y)dx-xydy=0是齐次方程. Þdxxydxyx22 (4)(2x+y-4)dx+(x+y-1)dy=0不是齐次方程.Þ (5)(2xsh+3ych)dx-3xchdy2x+y-4. =-dxx+y-1yxyxydy=0是齐次方程. xyy2xsh+3ychdyxxÞdy=2thy+y = Þydxdx3xx3xchx 齐次方程的解法: ydyy=j中, 令u=, 即y=ux, 有 dxxxdu=j(u), u+xdx 在齐次方程分离变量, 得 11 高等数学教案 §12 微分方程 du=dx. j(u)-uxdu=dx. òj(u)-uòx两端积分, 得 y代替u, 便得所给齐次方程的通解. xdydy 例1 解方程y2+x2=xy. dxdx求出积分后, 再用 解 原方程可写成 y2dyyx= , dxxy-x2y-1x2因此原方程是齐次方程. 令 y=ux, 于是原方程变为 2duu u+x, =dxu-1du=u. 即 xdxu-1y=u, 则 xdy=u+xdu, dxdx分离变量, 得 (1-)du=1udx. x两边积分, 得u-ln|u|+C=ln|x|, 或写成ln|xu|=u+C. 以y代上式中的u, 便得所给方程的通解 x ln|y|=y+C. x 例2 有旋转曲面形状的凹镜, 假设由旋转轴上一点O发出的一切光线经此凹镜反射后都与旋转轴平行. 求这旋转曲面的方程. 12 高等数学教案 §12 微分方程 解 设此凹镜是由xOy面上曲线L: y=y(x)(y>0)绕x轴旋转而成, 光源在原点. 在L上任取一点M(x, y), 作L的切线交x轴于A. 点O发出的光线经点M反射后是一条平行于x轴射线. 由光学及几何原理可以证明OA=OM, 因为 OA=AP-OP=PMcota-OP=而 OM=x2+y2. 于是得微分方程y-x, y¢y-x=x2+y2, y¢整理得dx=x+(x)2+1. 这是齐次方程. dyyydx=x+(x)2+1. dyyy 问题归结为解齐次方程 令即 yx=v, 即x=yv, 得v+ydv=v+v2+1, dyydv=v2+1, dydv=dy, v2+1y分离变量, 得两边积分, 得 ln(v+v2+1)=lny-lnC, Þv+v2+1=yy, Þ(-v)2=v2+1, CCy22yv-=1, C2C以yv=x代入上式, 得y2=2C(x+C). 2这是以x轴为轴、焦点在原点的抛物线, 它绕x轴旋转所得旋转曲面的方程为 y2+z2=2C(x+C). 2这就是所求的旋转曲面方程. 例3 设河边点O的正对岸为点A, 河宽OA=h, 两岸为平行直线, 水流速度为a, 有一鸭子从点A游向点O, 设鸭子的游速为b(b>a), 且鸭子游动方向始终朝着点 O. 求鸭子游过的迹线的方程. 13 高等数学教案 §12 微分方程 例3 设一条河的两岸为平行直线, 水流速度为a, 有一鸭子从岸边点A游向正对岸点O, 设鸭子的游速为b(b>a), 且鸭子游动方向始终朝着点O, 已知OA=h, 求鸭子游过的迹线的方程. 解 取O为坐标原点, 河岸朝顺水方向为x轴, y 轴指向对岸. 设在时刻t鸭子位于点P(x, y), 则鸭子运动速度 v=(vx, vy)=(dx, dy), 故有dx=vx. dyvydtdt-x, -y), v=(a-bx, -by). x2+y2x2+y2x2+y2x2+y2另一方面, v=a+b=(a, 0)+b(因此dx=vx=-a(x)2+1+x, 即dx=-a(x)2+1+x. dyvybyydybyy 问题归结为解齐次方程dx=-a(x)2+1+x. dybyy 令 yx=u, 即x=yu, 得 ydu=-au2+1, dybdu=-ady, 分离变量, 得u2+1by两边积分, 得 arshu=-(lny+lnC), bax1(Cy)1-b-(Cy)1+b. 将u=代入上式并整理, 得x=y2C以x|y=h=0代入上式, 得C=aa1, 故鸭子游过的轨迹方程为 haay1-by1+bh x=-, 0£y£h. 2hhb将u=x代入arshu=-(lny+lnC)后的整理过程: yaarshx=-b(lny+lnC) ya14 高等数学教案 §12 微分方程 -Þx=shln(Cy)aÞx=1(Cy)a-(Cy)a yy2bbbbbb-by1-1+aÞx=(Cy)-(Cy)aÞx=1(Cy)a-(Cy)a. 2C2§12.4 线性微分方程 一、 线性方程 线性方程: 方程dy+P(x)y=Q(x)叫做一阶线性微分方程. dxdydy+P(x)y=0叫做对应于非齐次线性方程+P(x)y=Q(x)的齐次线性方程. dxdxdydy=yÞ-1y=0是齐次线性方程. dxdxx-2如果Q(x)º0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程 下列方程各是什么类型方程? (1)(x-2) (2) 3x2+5x-5y¢=0Þy¢=3x2+5x , 是非齐次线性方程. (3) y¢+y cos x=e-sin x , 是非齐次线性方程. (4)dy=10x+y, 不是线性方程. dx23(y+1)2dy3dydxx=0或- (5)(y+1), 不是线性方程. +x=0Þ-dydx(y+1)2dxx3 齐次线性方程的解法: 齐次线性方程 dy+P(x)y=0是变量可分离方程. 分离变量后得 dxdy=-P(x)dx, y两边积分, 得 ln|y|=-P(x)dx+C1, ò 15 高等数学教案 §12 微分方程 -P(x)dx (C=±eC1), 或 y=Ceò这就是齐次线性方程的通解. 例1 求方程(x-2)dy=y的通解. dx 解 这是齐次线性方程, 分离变量得 dydx, =yx-2两边积分得 ln|y|=ln|x-2|+lnC, 方程的通解为 y=C(x-2). 非齐次线性方程的解法: 将齐次线性方程通解中的常数换成x的未知函数u(x), 把 -P(x)dx y=u(x)eò 设想成非齐次线性方程的通解. 代入非齐次线性方程求得 -P(x)dx-P(x)dx-P(x)dx-u(x)eòP(x)+P(x)u(x)eò=Q(x), u¢(x)eò化简得 u¢(x)=Q(x)eòP(x)dx, u(x)=Q(x)eòòP(x)dxdx+C, 于是非齐次线性方程的通解为 -P(x)dxP(x)dx y=eòQ(x)eòdx+C, ò-P(x)dx-P(x)dxP(x)dx或 y=Ceò+eòQ(x)eòdx. ò非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和. 5dy2y 例2 求方程-=(x+1)2的通解. dxx+1 解 这是一个非齐次线性方程. 16 高等数学教案 §12 微分方程 先求对应的齐次线性方程分离变量得 dy2y-=0的通解. dxx+1dy2dx, =yx+1两边积分得 ln y=2ln (x+1)+ln C, 齐次线性方程的通解为 y=C(x+1)2. 用常数变易法. 把C换成u, 即令y=u×(x+1)2, 代入所给非齐次线性方程, 得 52u×(x+1)2=(x+1)2 u¢×(x+1)+2u×(x+1)-x+121u¢=(x+1)2, 两边积分, 得 2 u=(x+1)2+C. 3再把上式代入y=u(x+1)2中, 即得所求方程的通解为 32 y=(x+1)(x+1)2+C. 3232, Q(x)=(x+1)2. 解: 这里P(x)=-x+12)dx=-2ln(x+1), 因为 òP(x)dx=ò(-x+1-P(x)dx=e2ln(x+1)=(x+1)2, eò5òQ(x)eòP(x)dxdx=ò5(x+1)2(x+1)-2dx=ò132(x+1)2dx=(x+1)23, 所以通解为 y=e-òP(x)dxòQ(x)eòP(x)dxdx+C=(x+1)2(x+1)2+C. 323 例3 有一个电路如图所示, 其中电源电动势为E=Emsinwt(Em、w都是常数), 电阻R和电感L都是常量. 求电流i(t). 17 高等数学教案 §12 微分方程 解 由电学知道, 当电流变化时, L上有感应电动势-L E-L即 di. 由回路电压定律得出 dtdi-iR=0, dtdi+Ri=E. dtLLdi+Ri=Emsinw t. dtLL 把E=Emsinw t代入上式, 得 初始条件为 i|t=0=0. di+Ri=Emsinw t为非齐次线性方程, 其中 dtLLER P(t)=, Q(t)=msinw t. LL 方程由通解公式, 得 i(t)=e-òP(t)dtòQ(t)eòP(t)dtdt+C-òRdt=eL(RdtEmòòLsinw teLdt+C) RttEm-R =eL(òsinwteLdt+C) L-RtEm =2(Rsinw t-w Lcosw t)+CeL. 22R+wL其中C为任意常数. 将初始条件i|t=0=0代入通解, 得C=因此, 所求函数i(t)为 tw LEm-REmL+ i(t)=2e(Rsinw t-w Lcosw t). R+w2L2R2+w2L2w LEm, R2+w2L2 二、伯努利方程 伯努利方程: 方程 dy+P(x)y=Q(x)yn (n¹0, 1) dx叫做伯努利方程. 下列方程是什么类型方程? 18 高等数学教案 §12 微分方程 dy11+y=(1-2x)y4, 是伯努利方程. dx33dydy (2)=y+xy5, Þ-y=xy5, 是伯努利方程. dxdxxy1 (3)y¢=+, Þy¢-y=xy-1, 是伯努利方程. yxx (1) (4)dy-2xy=4x, 是线性方程, 不是伯努利方程. dxdy+P(x)y1-n=Q(x) dx 伯努利方程的解法: 以yn除方程的两边, 得 y-n令z =y1-n , 得线性方程 dz+(1-n)P(x)z=(1-n)Q(x). dxdyy+-a(lnx)y2的通解. dxx 例4 求方程 解 以y2除方程的两端, 得 dy1-1+y=alnx, dxxd(y-1)1-1即 -+y=alnx, dxx y-2令z=y-1, 则上述方程成为