欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    MATLAB线性代数课后题.doc

    • 资源ID:3438820       资源大小:305.50KB        全文页数:11页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    MATLAB线性代数课后题.doc

    第1章 行列式1. 计算行列式解:2 用克拉默法则解下列方程组 : 解: 3 证明 证明:ans =(- a2*b + a2*c + a*b2 - a*c2 - b2*c + b*c2)*d4 + (a4*b - a4*c - a*b4 + a*c4 + b4*c - b*c4)*d2 + (- a4*b2 + a4*c2 + a2*b4 - a2*c4 - b4*c2 + b2*c4)*d + a4*b2*c - a4*b*c2 - a2*b4*c + a2*b*c4 + a*b4*c2 - a*b2*c4ans=a4*b2*c - a4*b2*d - a4*b*c2 + a4*b*d2 + a4*c2*d - a4*c*d2 - a2*b4*c + a2*b4*d + a2*b*c4 - a2*b*d4 - a2*c4*d + a2*c*d4 + a*b4*c2 - a*b4*d2 - a*b2*c4 + a*b2*d4 + a*c4*d2 - a*c2*d4 - b4*c2*d + b4*c*d2 + b2*c4*d - b2*c*d4 - b*c4*d2 + b*c2*d4左边等于右边所以可以得出证明。第2章 矩阵及其运算1. 计算下列乘积 解:2. 设 解:3. 求下列矩阵的逆矩阵: 解:(2) 解:第3章 矩阵的初等变换与线性方程组1. 解:2 求解下列齐次线性方程组 解:3 求解下列非齐次线性方程组解:第4章 向量组的线性相关性1. 求下列非齐次方程组的一个解及对应的齐次方程组的基础解系。 解:2. 求基础解系解: 3. 已知的两个基为: ,求由基a1,a2,a3到b1,b2,b3的过渡矩阵P.解: 第5章 相似矩阵及二次型1. 求下列矩阵的特征值与特征向量 (1) 解:(X的每个列向量都是特征向量,B的对角线是特征值)(2) 解:2. 设3阶方阵A的特征值为1=2,2=-2,3=1对应的特征向量依次为 解:令P=(p1, p2, p3), 则P-1AP=diag(2, -2, 1)=L, A=PLP-1.3. 设3阶对称矩阵A的特征值l1=6, l2=3, l3=3, 与特征值l1=6对应的特征向量为p1=(1, 1, 1)T, 求A.解: 设. 第6章 线性空间与线性变换1. 在R4中取两个基 e1=(1,0,0,0)T, e2=(0,1,0,0)T, e3=(0,0,1,0)T, e4=(0,0,0,1)T; a1=(2,1,-1,1)T, a2=(0,3,1,0)T, a3=(5,3,2,1)T, a3=(6,6,1,3)T. 求由前一个基到后一个基的过渡矩阵; 解:由题意知,2. 在R3中求向量a=(3, 7, 1)T在基a1=(1, 3, 5)T, a2=(6, 3, 2)T, a3=(3, 1, 0)T下的坐标.设e1, e2, e3是R3的自然基, 则 (a1, a2, a3)=(e1, e2, e3)A, (e1, e2, e3)=(a1, a2, a3)A-1,其中, . 因为 3. 在R3取两个基 a1=(1, 2, 1)T, a2=(2, 3, 3)T, a3=(3, 7, 1)T; b1=(3, 1, 4)T, b2=(5, 2, 1)T, b3=(1, 1, -6)T. 试求坐标变换公式. 设e1, e2, e3是R3的自然基, 则 (b1, b2, b1)=(e1, e2, e3)B, (e1, e2, e3)=(b1, b2, b1)B-1, (a1, a2, a1)=(e1, e2, e3)A=(b1, b2, b1)B-1A,其中 , . 设任意向量a在基a1, a2, a3下的坐标为(x1, x2, x3)T, 则,故a在基b1, b2, b3下的坐标为Acknowledgements My deepest gratitude goes first and foremost to Professor aaa , my supervisor, for her constant encouragement and guidance. She has walked me through all the stages of the writing of this thesis. Without her consistent and illuminating instruction, this thesis could not havereached its present form. Second, I would like to express my heartfelt gratitude to Professor aaa, who led me into the world of translation. I am also greatly indebted to the professors and teachers at the Department of English: Professor dddd, Professor ssss, who have instructed and helped me a lot in the past two years. Last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. I also owe my sincere gratitude to my friends and my fellow classmates who gave me their help and time in listening to me and helping me work out my problems during the difficult course of the thesis. My deepest gratitude goes first and foremost to Professor aaa , my supervisor, for her constant encouragement and guidance. She has walked me through all the stages of the writing of this thesis. Without her consistent and illuminating instruction, this thesis could not havereached its present form. Second, I would like to express my heartfelt gratitude to Professor aaa, who led me into the world of translation. I am also greatly indebted to the professors and teachers at the Department of English: Professor dddd, Professor ssss, who have instructed and helped me a lot in the past two years. Last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. I also owe my sincere gratitude to my friends and my fellow classmates who gave me their help and time in listening to me and helping me work out my problems during the difficult course of the thesis.

    注意事项

    本文(MATLAB线性代数课后题.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开