欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    实函与泛函与其它学科的联系.docx

    • 资源ID:3435351       资源大小:38.54KB        全文页数:3页
    • 资源格式: DOCX        下载积分:6.99金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要6.99金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    实函与泛函与其它学科的联系.docx

    实函与泛函与其它学科的联系实函与泛函与其它学科的联系 摘要本文主要讨论了在泛函分析课程教学中如何有机地将学习内容与数学分析、高等代数、实变函数等知识结合起来,培养学生的抽象思维能力与逻辑思维能力。 泛函分析是应上世纪量子力学等学科的需要发展起来的一门学科,迄今已经建立了较为完善的理论体系,可以说泛函分析既集了经典分析的大成,又架起了通往现代数学的桥梁,成为解决方程、控制论等其他数学问题的有力工具。泛函分析作为大学本科的一门课程,向数学专业的学生初步展示了数学既抽象又和谐的美。 泛函分析所讲的泛函二字从字面意思来解释就是更为广泛的一类函数。它不再是我们在数学分析或复分析中所讲的从实数到实数、复数到复数的函数,而是可以将任何集合中的点“变成”实数或复数的映射。这样的集合可以由函数构成,也可以由序列构成,因此有人说,泛函分析可以看成是函数空间上的函数论。这门课程是大学本科数学专业叔叔所要学习的最为抽象的课程,不仅大量涉及到了数学分析、实变函数、复变函数、拓扑学的知识,也与高等代数等课程的知识有联系,并且在一定程度上反映了空间的几何性质。那么如何在教学中将同学们所学的知识有机地结合起来应用到泛函分析的学习中来?如何由浅入深、由易到难地进行讲解,培养学生的抽象逻辑思维能力、分析解决问题的能力?如何在教学中向学生展现数学抽象、和谐的美,使其对数学的认识理解提升到一个新的高度呢?这些都是我们在教学中应该意识到并加以解决的问题。 泛函分析这门课程主要讨论了hilbert空间与banach空间上算子与泛函的各种性质。我们首先要在一般的集合上建立起各种各样的结构,例如拓扑结构、线性结构,其中使用了大量公理化方法,将我们再现实生活中两点距离的性质抽象出来定义到一般集合上形成度量空间。然后就象在数学分析中所做的一样,在这样的空间上利用“距离”定义空间中点的邻域,点列的收敛、空间上的连续映射等,从而研究空间的分析性质,例如空间是否完备化,如果不完备,如何利用类似实数完备化的方法将其完备化。同理我们可以在空间上附加线性结构成为线性空间。接着将距离这一概念抽象成范数,得到泛函分析中讨论最多的赋范线性空间。因此在教学中应适当地将数学分析关于距离、数列的收敛、函数的连续性等知识进行复习巩固,并与泛函分析中的定义作相应的比较,一次向学生展示泛函分析所研究空间的广泛性。 hilbert空间的性质及其上算子、泛函的讨论是泛函分析研究的主要内容之一。首先我们以学生熟悉的欧氏空间威力讨论其具有的性质,例如欧式空间上的内积,标准正交基,其上的变换与矩阵成一一对应关系等。由此如果将内积的性质公理化,以此定义出一般的内积空间;将欧氏空间中的标准正交基进行合理推广,得到一般内积空间上的规范正交系。这样我们就得到hilbert空间的规范正交系,其作用类似于欧氏空间的标准正交基。因此可以看出,hilbert空间是有限维欧氏空间最自然的一种推广。hilbert空间的几何性质是教学中一个非常有趣的内容。我们知道点到线段或直线的距离是点到线的垂线段的长度,那么如何将这个几何性质反映到hilbert空间上,并用抽象的数学语言表述出来呢?这就是极小化向量定理及其一系列推论,其中hilbert空间的正交分解尤为重要。hilbert空间上的算、泛函的性质有时怎样的呢?我们可以利用欧氏空间上的矩阵与之类比。 banach空间是将hilbert空间中对内积的要求去掉,剩下范数以后得到的完备赋范空间,这是更大更抽象的一类空间。banach空间仍具有线性结构和拓扑结构,那么其上的算子、泛函的性质是怎样的呢?banach空间上有三个重要定理回答了一个问题。这三个定理是:hahn-banach延拓定理、共鸣定理和闭图像定理。首先hahn-banach延拓定理处理的是线性空间上的泛函问题,它要说明的是如果空间上的泛函足够多,就可以用泛函来区别空间中任意不同的两点,更进一步,得到分离性定理。其次共鸣定理或一致有界定理的本质是由算子列的逐点有界性得到一致有界性。这与数学分析中函数列的逐点有界但未必一致有界是相悖的,因此在教学中要进行适当的对比。 在泛函分析的教学过程中,对定理证明的分析尤为重要。如何将定理的条件与结论有机地结合起来,找到联系两者的纽带,然后找到证明的入口。对例题的讲解也应注意同样的问题,教材中的举例往往都是非常经典的问题,例如如何证明一个赋范线性空间的完备性,虽然具有一定技巧,但是其方法都是学生在数学分析、实变函数中使用过的一些方法,因此要让学生作适当练习,理解掌握这些基本方法。对学生思维能力的培养贯穿于整个教学过程中,因此应从多方面出发,难易结合,抽象与直观联系,不仅促进学生抽象思维能力的发展,而且也能使其感受到数学的严谨的美。

    注意事项

    本文(实函与泛函与其它学科的联系.docx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开