欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    三角形与四边形类比探究题.docx

    • 资源ID:3204967       资源大小:41.13KB        全文页数:9页
    • 资源格式: DOCX        下载积分:6.99金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要6.99金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角形与四边形类比探究题.docx

    三角形与四边形类比探究题类比探究 解决类比探究问题的一般方法: 1、根据题设条件, 结合各问条件, 先解决第一问; 2、用解决第一问的方法类比解决下一问,如果不能,两问综合进行分析,找出不能类比的原因和不变特征,依据不变的特征,探索新的方法。 类比探究:图形结构类似、问题类似、常含探究、类比等关键词。 类比探究解题方法和思路 1、找特征,找模型:相似 三线合一、面积、全等三角形等; 2、借助几问之间的联系,寻找条件和思路。 3、照搬上一问的方法思路,解决问题,照搬辅助线、照搬全等、照搬相似等。 4、找结构:寻找不变的结构,利用不变结构的特征解决问题。 常见不变结构及方法: 直角:作横平竖直的线,找全等或相似; 中点:作倍长、通过全等转移边和角; 平行:找相似、转比例。 5、哪些是不变的,哪些是变化的。哪些条件没有用,如何进行转化,寻找能够类比的方法和思路。 1如图所示,在正方形上连接等腰直角三角形和正方形,无限重复同一过程,第一个正方形的边长为1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,第n个正方形与第n个等腰直角三角形的面积和为Sn 计算S1、S2、S3、S4 总结出Sn与Sn1的关系,并猜想出S1+S2+S3+S4+Sn与n的关系 2分别以ABCD的三边AB,CD,DA为斜边作等腰直角三角形,ABE,CDG,ADF 如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF请判断GF与EF的关系; 如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,中结论还成立吗?若成立,给出证明;若不成立,说明理由 3将两个用钢丝设计成的能够完全重合的直角三角形模型ABC和直角三角形DEF按如图所示的位置摆放,使点B、F、C、D在同一条直线上,且AB和DE、EF分别相交于点P、M,AC和DE相交于点N 试判断线段AB和DE的位置关系,并说明理由; 若PD=AC,线段PE和BF有什么数量关系,请说明你的理由 4如图,四边形ABCD为正方形,BEF为等腰直角三角形,点P为DE的中点,连PC,PF 如图,点E在BC上,则线段PC、PF的数量关系为_,位置关系为_ 如图,将BEF绕点B顺时针旋转a,则线段PC,PF有何数量关系和位置关系?请写出你的结论,并证明 如图,AEF为等腰直角三角形,且AEF=90°,AEF绕点A逆时针旋转过程中,能使点F落在BC上,且AB平分EF,直接写出AE的值是 _ 5如图,在ABC中,AB=AC,点E为BC边上一动点,过点E作射线EF交AC于点F,使AEF=B 判断BAE与CEF的大小关系,并说明理由; 请你探索:当AEF为直角三角形时,求AEF与BAE的数量关系 6如图,ABC为等腰直角三角形,BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰直角CDE,连接AD, 当点E运动过程中BCE与ACD的关系是_ AD与BC有什么位置关系?说明理由 四边形ABCD的面积是否有最大值?如果有,最大值是多少?如果没有,说明理由 7直角三角形ABC中,C=90°,AC=BC,点P是三角形ABC内一点,且满足PAB=PBC=PCA, 判断PC与PB的位置关系,并对你的判断加以说明 ABP与APC的面积比 8如图,ACD和BCE都是等腰直角三角形,ACD=BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H试猜测线段AE和BD的数量和位置关系,并说明理由 9如图,在等腰RtABC中,ACB=90°,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF 证明:BDF是等腰直角三角形 猜想线段AD与CF之间的关系并证明 10如图,等腰直角三角形ABC中,AC=BC,将ABC绕斜边AB的中点O旋转至DEF的位置,DF交AB于点P,DE交BC于点Q请猜想OQ与OP有怎样的数量关系?并证明你的结论 11如图甲,直角三角形ABC中,C=90°,分别以AB,AC,BC为边作正方形ABEF,ACMN,BCGH,面积分别设为S,P,Q,则S,P,Q满足怎样的等量关系? 如图乙,直角三角形ABC中,C=90°,分别以AB,AC,BC为边作等边三角形ABE,ACM,BCH,面积分别设为S,P,Q,则S,P,Q满足怎样的等量关系?并证明; 如图丙,锐角三角形ABC中,分别以AC,BC为边作任意平行四边形ACMN,BCGH,面积分别设为P,Q,NM和HG的延长线相交于点D,连接CD,在AB外侧作平行四边形ABEF,使得BE,AF平行且等于CD,面积设为S,则S,P,Q满足怎样的等量关系?并证明 12如图所示,四边形ABCD为正方形,BEF为等腰直角三角形,P为DE的中点,连接PC、PF 如图,E点在边BC上,则线段PC、PF的数量关系为_,位置关系为_ 如图,将BEF绕B点顺时针旋转°,则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明 如图,E点旋转到图中的位置,其它条件不变,完成图,则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明 13将两个全等的直角三角形ABC和DBE如图方式摆放,其中ACB=DEB=90°,A=D=30°,点E落在AB上,DE所在直线交AC所在直线于点F 求证:AF+EF=DE; 若将图中的直角三角形ABC绕点B顺时针方向旋转,且ABD=30°,其它条件不变,请在图中画出变换后的图形,并直接写出你在中猜想的结论是否仍然成立; 若将图中的直角三角形DBE绕点B顺时针方向旋转,且ABD=65°,其它条件不变,如图,你认为中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由 14如图1,ABC为等腰直角三角形,ACB=90°,F是AC边上的一个动点,以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD 猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论; 将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度,得到如图2、图3的情形图2中BF交AC于点H,交AD于点O,请你判断中得到的结论是否仍然成立,并选取图2证明你的判断 将原题中的等腰直角三角形ABC改为直角三角形ABC,ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD+AF的值 2215在图1到图3中,点O是正方形ABCD对角线AC的中点,MPN为直角三角形,MPN=90°正方形ABCD保持不动,MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F 如图1,当点P与点O重合时,OE与OF的数量关系为 _ ; 如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明; 如图3,当点P在AC的延长线上时,OE与OF的数量关系为 _ ;位置关系为 _ 16己知:正方形ABCD 如图,点E、点F分别在边AB和AD上,且AE=AF此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论 如图,等腰直角三角形FAE绕直角顶点A顺时针旋转,当0°90°时,连接BE、DF,此时中的结论是否成立,如果成立,请证明;如果不成立,请说明理由 如图,等腰直角三角形FAE绕直角顶点A顺时针旋转,当90°180°时,连接BD、DE、EF、FB,得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论 17已知:ABC和ADE都是等腰直角三角形,ABC=ADE=90°,点M是CE的中点,连接BM 如图,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为 _ ; 如图,点D不在AB上,中的结论还成立吗?如果成立,请证明;如果不成立,说明理由 18如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF将EOF绕点O逆时针旋转角得到E1OF1 探究AE1与BF1的数量关系,并给予证明; 当=30°时,求证:AOE1为直角三角形 19勾股定理是几何中的一个重要定理在我国古算书周髀算经中就有“若勾三,股四,则弦五”的记载如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理图2是由图1放入矩形内得到的,BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少? 20如图,等腰直角三角形ABC中,BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M 求证:EGM为等腰三角形; 判断线段BG、AF与FG的数量关系并证明你的结论 21已知直角梯形ABCD,ABCD,C=90°,AB=BC=CD,E为CD的中点 如图当点M在线段DE上时,以AM为腰作等腰直角三角形AMN,判断NE与MB的位置关系和数量关系,请直接写出你的结论; 如图当点M在线段EC上时,其他条件不变,中的结论是否成立?请说明理由 22如图,ABC与DEC是两个全等的直角三角形,ACB=CDE=90°,CAB=DCE,AB=4,BC=2,DEC绕点C旋转,CD、CE分别与AB相交于点F、G,设BG=x回答下列问题: 设CG=y1,请探究y1与x的函数关系,并直接写出y1的最小值; 设AF=y2,请探究y2与x的函数关系 23已知:ABC和ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,连接EC,取EC的中点M,连接BM和DM 如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是 _ ; 将图1中的ADE绕点A旋转到图2的位置时,判断中的结论是否仍然成立,并说明理由 24若直角三角形三边长为正整数,且周长与面积数值相等,则称此三角形为“完美直角三角形”,求“完美直角三角形”的三边长 25以ABC的两边AB、AC为腰分别向外作等腰RtABD和等腰RtACE,BAD=CAE=90°,连接DE,M、N分别是BC、DE的中点探究:AM与DE的位置关系及数量关系 如图当ABC为直角三角形时,AM与DE的位置关系是 _ ,线段AM与DE的数量关系是 _ ; 将图中的等腰RtABD绕点A沿逆时针方向旋转°后,如图所示,问中得到的两个结论是否发生改变?并说明理由 26如图1,四边形ACDG与四边形ECBH都是正方形,且B,C,D在一条直线上,连接DE并延长交线段AB于点F 求证:AB=DE,ABDE; 如果将中的两个正方形换成两个矩形,如图2,且=,则AB与DE的数量关系与位置关系会发生什么变化?请说明你的看法和理由 如果将中的两个正方形换成两个直角三角形,如图3,BCE=ACD=90°,且=k,且请直接写出AB与DE的数量关系与位置关系 27锐角为45°的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板把两块全等的等腰直角三角板按如图1放置,其中边BC、FP均在直线l上,边EF与边AC重合 将EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想; 将EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ你认为中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由 28如图1,E是等腰RtABC边AC上的一个动点,以CE为一边在RtABC作等腰RtCDE,连接AD,BE我们探究下列图中线段AD、线段BE的长度关系及所在直线的位置关系: 猜想如图1中线段AD、线段BE的长度关系及所在直线的位置关系; .将图1中的等腰RtCDE绕着点C按顺时针方向旋转任意角度a,得到如图2、如图3情形请你通过观察、测量等方法判断中得到的结论是否仍然成立,并选取图2证明你的判断 将原题中等腰直角三角形改为直角三角形,且AC=a,BC=b,CD=ka,CE=kb ,第题中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由 在第题图5中,连接BD、AE,且a=4,b=3,k=,求BD+AE的值 29如图1,在ABC中,ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF 若AB=AC,BAC=90° 当点D在线段BC上时,试探讨CF与BD的数量关系和位置关系; 当点D在线段BC的延长线上时,中的结论是否仍然成立,请在图2中画出相应图形并说明理由; 如图3,若ABAC,BAC90°,BCA=45°点D在线段BC上运动,试探究CF与BC位置关系 2230已知ABC和ADE分别是以ABAE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连DC,CH 如图1,当D点在AB上时,则DEH的度数为 _ ;CH与CD的数量关系是 _ ,并说明理由; 将图1中的ADE绕A点逆时针旋转45°得图2:则DEH的度数为 _ ,CH与CD之间的数量关系为 _ ; 将图1中的ADE绕A点顺时针旋转得图3,请探究CH与CD之间的数量关系,并给予证明

    注意事项

    本文(三角形与四边形类比探究题.docx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开