欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    《热学》第六章 热力学第二定律.docx

    • 资源ID:3183081       资源大小:42.91KB        全文页数:15页
    • 资源格式: DOCX        下载积分:6.99金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要6.99金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《热学》第六章 热力学第二定律.docx

    热学第六章 热力学第二定律第六章 热力学第二定律 6-1 设每小时能造冰m克,则m克25的水变成 18的水要放出的热量为 25m+80m+0.5×18m=114m 有热平衡方程得 4.18×114m=3600×2922 m=2.2×10克=22千克 由图 试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。 4 证:d当任意循环可逆时。用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。 考虑人一微小可逆卡诺循 环,如图中阴影部分所示,系统从高温热源Ti吸热Qi,向低温热源Ti放热,对外做功,则效率 任意可逆循环R的效率为 A为循环R中对外作的总功 又,Tm和Tn是任意循环所经历的最高温热源和最低温热源的温度 对任一微小可逆卡诺循,必有: TiTm, TiTn 或 或 令 表示热源Tm和Tn之间的可逆卡诺循环的效率,上式 为 将式代入(1)式: 或 或 即任意循环可逆时,其效率不大于它所机灵的最高温热源Tm和最低温度热源Tn之间的可逆卡诺循环的效率。 任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡诺循环的效率必小于可逆时的效率,即 对任一微小的不可逆卡诺循环,也有 将(3)式代入(4)式可得: (4) 即任意不可逆循环的效率必小于它所经历的最高温热源Tm和最低温热源Tn之间的可逆卡诺循环的效率。 综之,必 即任意循环的效率不可能大于它所经历的最高温热源和最低温热源之间的可逆卡诺循环的效率。 *6-8 若准静态卡循环中的工作物质不是理想气体而是服从状态方程p(v-b)=RT。式证明这可逆卡诺循环的效率公式任为 证:此物种的可逆卡诺循环如图。 等温膨胀过程中,该物质从高温热源T1吸热为 等温压缩过程中,该物质向低温热源放热为 由第五章习题13知,该物质的绝热过程方程为 利用 可得其绝热方程的另一表达式子 由绝热线23及14得 两式相比得 该物质卡诺循环的效率为 可见,工作于热源T1和T2之间的可逆机的效率总为1 ,与工作物质无关,这正是卡诺定理所指出的。 6-9 (1)利用式证明,对一摩尔范德瓦耳斯气体有 由(1) 证明: (3)设Cv为常数,证明上式可写 其中U0=UO-cvto+a/vo 证: 对一摩尔物质,(6.7)式为 一摩尔范氏气体的物态方程为 代入上式即得 (2)视u为T、v的函数,由(1)得 积分上式 即得 (3)当Cv为常数 由(2)即得 其中 6-10设有一摩尔范德瓦耳斯气体,证明其准静态绝热过程方程为 该气体的摩尔热容量Cv为常数 证:上题给出 由 得 Tds = dupdv = CvdT dv 由熵增原理知,可逆绝热过程中系统的熵不变,有 CvdT dv = 0 或 = 0 已知 为常数,积分上式即得 6-11接上题,证明范德瓦耳斯气体准静态绝热过程方程又可写为 证:有一摩尔范氏气体的状态方程得 代入上题结果 由于R是常量,所以上式可写作 6-12证明:范德瓦耳斯气体进行准静态绝热过程时,气体对外做功为 CVa( ) 设Cv为常数 证:习题9给出,对摩尔范氏气体有 当范氏气体有状态变到状态。内能由u1变到u2,而Cv为常数时,上式为 u2u1=Cva 绝热过程中,Q=0,有热力学第一定律得 气体对外作的功 A=u2u1=Cva 6-13证明:对一摩尔服从范德瓦耳斯方程的气体有下列关系: 要利用范德瓦耳斯气体的如下关系: 证:习题9已证得,一摩尔范氏气体有 视V为T、P的函数,有 所以,1摩尔范氏气体在无穷小等压过程中,热力学第一定律可写为: dQ = CpdT = dupdv = CvdT dvdv 或 又 由 (vb) =RT 可得 代入上式即得 6-14 用范德瓦耳斯气体模型,试求在焦耳测定气体内能实验中气体温度的变化.设气体定容摩尔热容量CV为常数,摩尔体积在气体膨胀前后分别为V1,V2。 解:当1摩尔范氏气体由变到,而CV为常数时,由9题结果知其内能变化为: u2u1=CVa ( ) (1) 焦耳自由膨胀实验中,A=0,且气体向真空的膨胀过程极短暂,可认为气体来不及与外界热交换,Q=0,由热力学第一定律得 u2u1=0 对于1摩尔范氏气体,由式则得: T1T1= ( ) 6-15利用上题公式,求CO2在焦耳实验中温度的变化。设 体的摩尔体积在膨胀前是2.01·mol1,在膨胀后为 4.01·mol1。已知CO2的摩尔热容量为3.38R, a=3.6atm·I2·mol2 解:取R=8.2×102atm·l·mol1·K1利用上题公式并代入已知数据得 T1T1= ( )=3.25K 负号表示范氏气体自由膨胀后温度降低。 6-16 对于一摩尔范德瓦耳斯气体,证明经节流膨胀后其温度的变化T2-T1为 T2T1= 设气体的摩尔热容量为常数。 证:由9题结果,1摩尔范氏气体的内能为 u = u0'CvT 由范氏气态方程 (vb)=RT 得 pv=RTpb 则1摩尔范氏气体的焓为 h=upv=(cvR)T bu0'=(cvR(T u0') 当1摩尔范氏气体由状态变到状态时,起焓变化为 h1h2= 气体节流膨胀前后焓不变,所以,令上式中h1h2=0即得1摩尔范氏气体节流膨胀后温度的变化,为 T2T1= 6-17假设一摩尔气体在节流膨胀前可看作范德瓦尔斯气体,而在节流膨胀后可看作理想气体,气体的定容摩尔热量为CV为常数。试用上述模型证明,气体节流前后温度变化为 T=T2T1= 试在T1v1图上画出T=0的曲线,并加以讨论。 证:由上题证明知,1摩尔范氏气体节流膨胀前的焓为 h1=T1 u0' 节流膨胀后的气体可视为理想气体,起1摩尔的焓为 h2 =u2p2v2=cvT2cvT0u0RT2 =T2u0 ''视二常数u0'和u0''相等,由气体节流气候焓不变,所以 h1h2= =0 解之,气体节流前后温度的变化为 T = T2T1= 令上式T= 0,即 RT1 = 0 或 T1= · 以1摩尔氧为例,由表12,取 a=1.36atm·l·mol b=0.3818 l· mol R=0.082rtm· l· mol·K,二式化为 T1=1024 取各个不同的V1值,可得相应的T1值,列表如下: 用描点法作出式的图线氧的转换温度曲线如下 V1 b 0.04 0.06 0.08 0.1 0.02 11122T1 V1 T1 0 0.3 931 213 489 0.4 960 0.5 976 627 1 1009 710 10 1039 876 100 1041.7 对于本题模型的气体,当气体节流前的状态: 1. 由图中曲线上方的点表示时,气体节流膨胀后温度不变,不同的初始体积对应不同的转换温度。 2. 由图中曲线下方的曲线表示时,从、式知,气体节流膨胀后温度降低,对于氧气,显然,常温下节流温度降低。 3.由图中上方的点表示时,气体节流膨胀后温度升高 T=0的曲线称为转换温度曲线 618 接上题,从上题作图来看,T0 = 具有什么意义?。若已知氮气 a=1.35×100 atm·mol, b= 39.6 cm·mol, 氦气 a= 0.033×10atm·cm·mol, b = 23.4·mol,试求氮气 6-21 设有一摩尔的过冷水蒸气,其温度和压强分别为24和1bar,当它转化为 24下的饱和水时,熵的变化是多少?计算时假定可把水蒸气看作理想气体,并可利用上题数据。 解:由提示,将实际过程的初、始态,看作通过两个可逆过程得到,并设中间状态为2,初始状态分别为1、3。 先设计一个理想气体可逆等温膨胀降压过程,计算S1: -16-16 6-26-2 = ×8.31 ln =1.62KJ·k· 再设计一个可逆等温等压相变过程,计算 S2,这已在上题算出: S2=Cp ln Cp ln 11(1)式为 S=Cpln Cp ln Cv ln =Cpln Rln 与式相同 得证 6-24 在一绝热容器中,质量为m,温度为T1的液体和相同质量的但温度为T2的液体,在一定压强下混合后达到新的平衡态,求系统从初态到终态熵的变化,并说明熵增加,设已知液体定压比热为常数CP。 解:两种不同温度液体的混合,是不可逆过程,它的熵变可以用两个可逆过程熵变之和求得。设T1>T2,混合后平衡温度T满足下式 mCp(T1T)=mCp(TT1) T = (T1T2)/2 温度为T1的液体准静态等压降温至T,熵变为 温度为T2的液体准静态等压升温至T熵变为 由熵的可加性,总熵变为: S=SS=mCp(ln ln )=mCpln(T/T1T2) 因 >0 即T12T1T2T2>0 T12T1T2T24T1T2>0 由此得>4T1T2 所以,S>0 由于液体的混合是在绝热容器内,由熵增加原理可见,此过程是不可逆。 6-25 由第五章 习题15的数据,计算一摩尔的铜在一大气压下,温度由300K升到1200K时熵的变化。 2222222 解:借助给定初、终态间的可逆等压吸热过程,计算熵的变化,并将第五章习题15的数据代入,有 =a ln b =37213J 6-26 如图626,一摩尔理想气体氢在状态1的参量为V1=20L,T1=300K。图中13为等温线,14为绝热线,12和43均为等压线,23为等容线,试分别用三条路径计算S3S1: 123 13 143 解:由可逆路径123求S3S1 Cp ln Cv ln =R ln =R ln =8.31 ln =5.76 J·K 由路径13求S3S1 1 =5.76 J·K 由于14为可逆绝热过程,有熵增原理知S4S1=0 1从等压线43 = = 从绝热线14 T1v11或 则 即 故 =5.76 J·K 计算结果表明,沿三条不同路径所求的熵变均相同,这反映了一切态函数之差与过程无关,仅决定处、终态。 6-27在第六章 图612中, 1又,在循环MNDM中,系统在MPN段吸热Q,在等温线 DM段放热Q2,对外做的功等于循环包围的面积,即 QQ2=面积MNDM 式减式得: Q-Q=面积ABDMA-面积MNDM =面积MAP面积PNB 视二相邻绝热线之间的等温线AB为一级无穷小量,则面积MAP与面积PNB的各边均为一级无穷小量,面积MAP与面积PNB均为二级无穷小量,所以,QQ为二级无穷小量。 6-28 一实际制冷机工作于两恒温热源之间, 热源温度分别为T1=400K,T2=200K。设工作物质在没一循环中,从低温热源吸收热量为200cal,向高温热源放热600cal。 在工作物质进行的每一循环中,外界对制冷机作了多少功? 制冷机经过一循环后,热源和工作物质熵的总变化 如设上述制冷机为可逆机,经过一循环后,热源和工作物质熵的总变化应是多少? 若中的饿可逆制冷机在一循环中从低温热源吸收热量仍为200cal,试用中结果求该可逆制冷机的工作物质 向高温热源放出的热量以及外界对它所作的功。 解: 由热力学第一定律,外界对制冷机作的功为 A=Q1-Q2=600-200=400cal=1672J (2)经一循环,工作物质又回到初态,熵变为零,热源熵变是高温热源熵变 S1与低温热源熵变S2之和。所以,经一循环后,热源和工作物质的熵的总变化为 Sb= 视工资与热源为一绝热系,若为可逆机,由熵增加原理知,整个系统的总熵变为零。即 S0=0 由知,对于可逆机 即工质想高温热源放出的热量。而外界对它的功为 A=Q1'-Q2=400-200=200cal=836J 计算结果表明,当热源相同,从低温热源取相等的热量时,可逆制冷机比实际制冷机所需的外功少. 6-29 接上题,(1)式由计算数值证明:实际制冷机比可逆制冷机外需要的外功值恰好等于T1Sb (T1、Sb见上题). (2)实际制冷机额外多需的外界功最后转化为高温热源的内能.设想利用在这同样的两恒热源之间工作的一可逆热机,把这内能中的一部分再变为有用的功,问能产生多少有用的功. 解:(1)实际制冷机所需之功为 A1=Q1-Q2 ' 可逆制冷机所需之功为 A2=Q1'-Q2 实际制冷机比可逆机所需的额外功为 A=A1-A2=(Q1-Q2) -(Q1'-Q2 ) =Q1-Q1'=Q1-TIQ2/T2 (2)在热源T1、T2之间工作的可逆热机的效率为 能产生的有用工为 A=A=T1Sb 6-30 入土6-30a,在边厂为L的立方形盒内盛有单原子理想气体.设每一分子的质量为m.由量子力学可以证明,每一个分子的能量只能取下列一系列间断值: 其中 nx、ny、nz=1、2、3, 在内的点数为 (2)在E和E+E能量范围内的点数为 由此可见,每一分子的力学运动状态与体积V成正比。 证:如图6-30b,以nx、ny、nz为轴建立直角坐标系,构成三维坐标空间,每一组,表征分子的一种力学运动状态,对应于nx、ny、nz坐标空间内的一个点 即 由于nx、ny、nz只取正值,其坐标空间是全空间的 ,由上式可见,分子能量小于等于某一值的所球内,即使的所有可能的有可能的nx、ny、nz的值,是在nx、ny、nz坐标空间中一为半径的 nx、ny、nz的值在nx、ny、nz坐标空间中占据的体积为: 将nx、ny、nz坐标空间划分为若干边长为的立方体小格,如图6-30b所示,由于nx、ny、nz的值只取正整数,则每一个分子运动状态的代表点在坐标空间占据的体积等于单位立方体小格的体积 所以,在内的点数为 使在E之间的所有可能的nx、ny、nz的值在坐标空间中占据的体积为 其中,为气体的体积 而每一分子运动状态的代表点在nx、ny、nz坐标空间内占据的体积为一个单位体积 所以,在能量范围内的点数为 可见,每一分子在某一能量值附近所可能有的力学状态与气体体积成正比

    注意事项

    本文(《热学》第六章 热力学第二定律.docx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开