欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    《三角形的内角和》教学设计.docx

    • 资源ID:3171778       资源大小:41.45KB        全文页数:8页
    • 资源格式: DOCX        下载积分:6.99金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要6.99金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《三角形的内角和》教学设计.docx

    三角形的内角和教学设计三角形的内角和教学设计 襄阳市回民小学孟辉 教材分析: 三角形内角和一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册平等与垂直中的角的认识和本册本单元三角形的特性以及三角形三边关系、三角形的分类等知识之后进行的,在此之后则是图形的拼组,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的内角和是180°这一规律具有重要意义。 首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教师提供的表中。最后发现,大小、形状不同的三角形,每个三角形内角和都在180°左右。 三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180度。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。 另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90度,钝角三角形里的两个锐角和小于90度。 学生状况分析: 学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级上册教材里已经学习了角的认识,也知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。 教学目标: 1通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。 2发展学生动手操作、观察比较和抽象概括的能力。通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。 3通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识、探索精神和实践能力。 教学重、难点: 验证三角形的内角和是180°。因为学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。 教具、学具准备: 师:课件,表格若干,三角板,量角器; 生:直角三角形、锐角三角形和钝角三角形各一个,量角器,一副三角板。 教学过程: 一、复习旧知、谈话导入 师:三年级我们学过的角有哪些?什么是平角?平角多少度? 猜谜语:形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形) 师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下? 学生讲学过的三角形知识。 回忆已经学过的三角形知识为新内容进行铺垫。同时,也为知识的迁移作了伏笔。课标强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。 二、创设情境,引出课题,以疑激思 师:什么是三角形的内角?三角形有几个内角? 生:就是三角形内的三个角。每个三角形都有三个内角。 师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。 师:有两个三角形为了一件事正在争论,我们来帮帮他们。 师:同学们,请你们给评评理:是这样吗? 生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。 生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。 生3:当然是大三角形的内角和大了。 生4:我同意第二个同学的意见,两个三角形的内角和一样大。 师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。(板书课题:三角形的内角和) 三、动手操作,探究问题,以动启思 1、师拿出两个三角板,问:它们是什么三角形? 生:直角三角形。 师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。 师:不用计算,你能用已学过的知识进行推理来验证“直角三角形的内角和是90°”这个结论吗? 课件演示4),师讲解: 、小组合作,讨论验证方法 汇报验证方法、结果 谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样? 生A:我们小组是用剪拼的方法,将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。 师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。 师播放课件:剪拼法:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。 生:不管什么三角形三个角都能拼成一个平角。 师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。 生B:我们小组是用撕的方法。我们是用手把3个角撕下来,然后再拼,结果也能拼成一个平角。 生C:我们小组是用折的方法,同样得到三角形的内角和是180度。 师:请这位同学折来给大家看看。 生:3个角折成了一个平角。 师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗? 锐角三角形、钝角三角形都折了几次?现在请同学们看屏幕,让我们来看看直角三角形折了几次? 师:折了几次?想想为什么直角三角形可以只折两次就能证明。 生;因为它是一个直角三角形,已经有了一个直角,另外2个锐角只要能拼成直角,三个角的和就是180°了。 师:说得真清楚。 3、师:老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中: 汇报。 问:你们发现了什么? 小结:通过测量我们发现每个三角形的三个内角和都在180度左右。 师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。 小组合作,选出不同类型的三角形进行实验。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。 4、师小结:刚才同学们用量、剪、拼、折等方法证明了无论是什么样的三角形内角和都是1800,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。 5、师:它的内角和是多少度? 生:180°。 师:它的内角和是多少度? 生:180°。 师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢? 师:把大三角形平均分成两份。它的内角和是多少度? 师:哪个对?为什么? 生:180°,因为它还是一个三角形。 师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度? 这时学生的答案又出现了180°和360°两种。 师:究竟谁对呢? 生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。 生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。 师:表扬:你真聪明。 师:三角形不论位置、大小、形状如何,它的内角和总是180° 这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。 四、解决问题: 学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。 1、求三角形中一个未知角的度数。 在三角形中,已知1=70°,2=50°,求3。 在三角形中,已知1=78°,2=44°,求3。 选算式:(1)A=180°-55°(2)A180°-90°-55°(3)A=90°-55° 2、判断 一个三角形的三个内角度数是:80°、75°、24°。 三角形越大,它的内角和就越大。 一个三角形至少有两个角是锐角。 钝角三角形的两个锐角和大于90°。 3、解决生活实际问题。 爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度? 交通警示牌“让”为等边三角形,求其中一个角的度数。 4、拓展练习。 利用三角形内角和是180°,求出下面四边形、六边形的内角和? 师:小组的同学讨论一下,看谁能找到最佳方法。 学生汇报,在图中画上虚线,教师课件演示。 请同学们自己在练习本上计算。 练习设计由浅入深,由易到难,紧紧围绕三角形的内角和来进行,进一步加深了对三角形内角和的理解和运用,让学生算等腰三角形风筝顶角的度数和等边三角形交通警示牌的度数,不但培养了学生解决问题的能力,也让学生感受到数学与生活的密切联系。最后,让学生求四边形、六边形的内角和的度数,不仅培养了学生知识的迁移能力,而且将所学知识进行了内化和升华。 四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角、长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。本节课,引导学生从“猜测验证”展开学习活动,学生在小组中合作探索,通过量一量、撕一撕、折一折,选择不同的一种或者几种方法来验证三角形的内角和是180°。在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。这节课,力图从学生的生活经验和已有的知识背景出发,采取观察操作、合作的学习方式,帮助学生在实践活动中理解概念,掌握知识,并让评价功能贯穿课堂始终,体现了评价的价值,让课堂充满活力,也让学生真正成为学习的主人。

    注意事项

    本文(《三角形的内角和》教学设计.docx)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开